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• We used DenseNet121[3] as the classification backbone. This classifier 
contains 1+N output headers. One of the output headers is to predict 
whether it is a COVID-19 positive or not, and the other N output 
headers are used to predict assembled labels. 

• Label-Assemble comes in two different types: fully-supervised Label-
Assemble and semi-supervised Label-Assemble. The semi-supervised 
component consists of three loss functions are as the figure below.

Method Results
(1) Compared with the current state-of-the-art[4], we only use 1000 images 

(3%) to achieve the effect of it.
(2) For  fully-supervised Label-Assemble, the more similar the diseases, the 

better the model.
(3) Semi-supervised Label Assemble can better improve the effect on 

classification by learning more negative sample features of different 
categories.

(4) Exceeding Prior Arts of COVID-19 Classification

Introduction
Despite the grand success of deep learning in a few medical 
applications, its prohibitively high annotation costs raise doubts 
about the feasibility of applying it to those medical specialties that 
lack such magnitude of annotation.
• For Pancreas tumors detection in FELIX[1], it needs 5038 examples 

to get high performance. But This annotation took 15 human-year 
to create.

• it is impossible to acquire sufficient annotation or even to gather 
sizable data for novel diseases and emerging pandemics
during the outbreak. 

• We ask: can we exploit these existing, large, annotated datasets 
to facilitate computer-aided diagnosis of novel diseases?

Materials
• COVIDx CXR-2 provides about 15,000 subjects from at least 51 

countries. 

• ChestX-ray14[2] provides 112,120 frontal-view X-ray images of 30,805 
unique patients with the text-mined 14 disease image labels. 

Conclusion
Label-Assemble shows a good prospect in disease diagnosis: we can use 
common pneumonias to improve the accuracy of rare pneumonias and 
reduce the cost of labeling. Semi-supervised Label-Assemble not only 
improves accuracy, but also eliminates the effects of category similarity. 
Although our paper focuses on COVID-19, the proposed method and 
discovery are applicable to many novel diseases, e.g., Silicosis. Note that 
for novel diseases, we still need many labeled data for evaluation.
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