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 Task: To classify images of the digit zero

» MNIST: A dataset that provides images and annotations of 0~9

* MNIST-zero: Derived from MNIST, wherein only the images of the digit zero are labeled as positives
and the remainder are neqatives (sufficient for the task)

* The total numbers of images are the same in MNIST and MNIST-zero

*  Which dataset would you prefer for the task, MNIST or MNIST-zero?
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© Class of interest—"Zero”
O Others

MNIST-zero MNIST
AUC of “Zero”: 98.8% AUC of “Zero”: 99.7%

1. Zhu, Z., Kang, M., Yuille, A. and Zhou, Z., Assembling Existing Labels from Public Datasets to Diagnose Novel Diseases: COVID-19 in Late 2019. Medical Imaging Meets NeurlPS 2022.
https://www.cs.jhu.edu/~alanlab/Pubs22/zhu2022assembling.pdf
2. Kang, M., Lu, Y., Yuille, A.L. and Zhou, Z., 2021. Data, Assemble: Leveraging Multiple Datasets with Heterogeneous and Partial Labels. arXiv preprint arXiv:2109.12265.



https://www.cs.jhu.edu/~alanlab/Pubs22/zhu2022assembling.pdf

© Class of interest—"Zero”
O Others
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Accuracy was improved from 96.3% to 99.3%

¢

MNIST-zero MNIST
AUC of “Zero”: 98.8% AUC of “Zero”: 99.7%

COVID-19 COVID-19 &
14 chest diseases from NIH ChestXray (2017)

1. Zhu, Z., Kang, M., Yuille, A. and Zhou, Z., Assembling Existing Labels from Public Datasets to Diagnose Novel Diseases: COVID-19 in Late 2019. Medical Imaging Meets NeurlPS 2022.
https://www.cs.jhu.edu/~alanlab/Pubs22/zhu2022assembling.pdf
2. Kang, M., Lu, Y., Yuille, A.L. and Zhou, Z., 2021. Data, Assemble: Leveraging Multiple Datasets with Heterogeneous and Partial Labels. arXiv preprint arXiv:2109.12265.



https://www.cs.jhu.edu/~alanlab/Pubs22/zhu2022assembling.pdf
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Goal: Detecting and Segmenting Cancer

I BE © . Pancreas

= Detailed per-voxel annotations are limited in public datasets
o Colon tumors: 126 examples
o Liver tumors: 131 examples
o Pancreas tumors: 282 examples
o Kidney tumors: 300 examples

= High-performance Al algorithms require large annotated data

o Pancreas tumors: 5,038 annotated CT scans in FELIX w= Sensitivity=97%, Specificity=99%
o This annotation took 15 human-year to create

1. Xia, Y., Yu, Q., Chu, L., ... & Fishman, E. K. (2022). The FELIX Project: Deep Networks To Detect Pancreatic Neoplasms. medRxiv.



Goal: Detecting and Segmenting Cancers (Not Cancer)

—
Cancer deaths by type, World, 2019

Total annual number of deaths from cancers across all ages and both sexes, broken down by cancer type.

Tracheal, bronchus, and lung cancer 2.04 million
Colon and rectum cancer

Stomach cancer

Breast cancer

Pancreatic cancer

Esophageal cancer

Prostate cancer

Liver cancer

Leukemia

Cervical cancer

Non-Hodgkin lymphoma

Brain and central nervous system cancer
Bladder cancer

Lip and oral cavity cancer

Ovarian cancer

Gallbladder and biliary tract cancer
Kidney cancer

Larynx cancer 23,356

Other pharynx cancer

Multiple myeloma

Uterine cancer

Nasopharynx cancer

Malignant skin melanoma

Other cancers

Non-melanoma skin cancer
Thyroid cancer

Mesothelioma

Hodgkin lymphoma

Testicular cancer

How can we deal with
many other types of tumors?

0] 500,000 1 million 1.5million 2 million

Source: IHME, Global Burden of Disease (2019) OurWorldinData.org/cancer ¢ CC BY



Goal: Detecting and Segmenting Cancers (Not Cancer)

How can we deal with many other types of tumors?

Two perspectives

. Exploiting existing public datasets and their JEIgiEIREE(o]y
l.  Exploring the potential of JINERIEEIEUIMER (€.g., radiology report and synthetic tumors)

| will present our major achievements of the projects



CLIP-Driven Universal Model for
Organ Segmentation and Tumor Detection

Jie Liu", Yucheng Tang?, Yixiao Zhang?, Jie-Neng Chen?, Junfei Xiao®, Yongyi Lu?,
Yixuan Yuan', Alan Yuille?, and Zongwei Zhou®*

'City University of Hong Kong ~ °NVIDIA  3Johns Hopkins University

The first-place solution in Medical Segmentation Decathlon (MSD)



Publicly available abdominal CTs: 76 U-Nets &

Datasets # Targets #Scans  Annotated Organs or Tumors

1. Pancreas-CT [46] 1 82 Pancreas

2. LiTS [3] 2 201 Liver, Liver Tumor™

3. KiTS [18] 2 300 Kidney, Kidney Tumor*

4. AbdomenCT-1K [32] 4 1000 Spleen, Kidney, Liver, Pancreas

5. CT-ORG [44] 4 140 Lung, Liver, Kidneys and Bladder

6. CHAOS [55] 4 40 Liver, Left Kidney, Right Kidney, Spl

7-11. MSD CT Tasks [1] 9 947 Spl, Liver and Tumor*, Lung Tumor*, Colon Tumor*, Pan and Tumor*, Hepatic Vessel and
Tumor*

12. BTCV [26] 13 50 Spl, RKid, LKid, Gall, Eso, Liv, Sto, Aor, IVC, R&SVeins, Pan, RAG, LAG

13. AMOS22 [23] 15 500 Spl, RKid, LKid, Gall, Eso, Liv, Sto, Aor, IVC, Pan, RAG, LAG, Duo, Bla, Pro/UTE

14. WORD [31] 16 150 Spl, RKid, LKid, Gall, Eso, Liv, Sto, Pan, RAG, Duo, Col, Int, Rec, Bla, LFH, RFH

15. 3D-IRCADD [49] 13 20 Liv, Liv Cyst, RLung, LLung, Venous, PVein, Aor, Spl, RKid, LKid, Gall, IVC
Clavicula, Humerus, Scapula, Rib 1-12, Vertebrae C1-7, Vertebrae T1-9, Vertebrae L1-5, Hip,
Sacrum, Femur, Aorta, Pulmonary Artery, Right Ventricle, Right Atrium, Left Atrium, Left Ven-

16. TotalSegmentator [59] 104 1,024 tricle, Myocardium, PVein, SVein, IVC, Iliac Artery, Iliac Vena, Brain, Trachea, Lung Upper
Lobe, Lung Middle Lobe, Lung Lower Lobe, AG, Spl, Liv, Gall, Pan, Kid, Eso, Sto, Duo, Small
Bowel, Colon, Bla, Autochthon, Iliopsoas, Gluteus Minimus, Gluteus Medius, Gluteus Maximus
Aor, AG, CBD, Celiac AA, Colon, duo, Gall, IVC, Lkid, RKid, Liv, Pan, Pan Duct, SMA, Small

17. JHH (private) 21 5,038 bowel, Spl, Sto, Veins, Kid LtRV, Kid RtRV, CBD Stent, PDAC*, PanNET*, Pancreatic Cyst*




Goal: Segment everything in the abdomen

Approach: Developing a single (Universal) model to learn from an assembly of public datasets
2,995 (T scans; 25 organs; 6 tumors; 252 GB in total

Challenge I: Domain gap between datasets

Challenge II: Inconsistent annotation protocol and partial annotation

Challenge lll: Adapt to other organs/tumors




The Universal Model
ACT of G text
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The Universal Model—why CLIP embedding?
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dictionary prompt temp CLIP embedding
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CLIP embedding
1. Semantic meaning
2. Fixed length

Conventional one-hot embedding
1. No semantic meaning

2. Not extenaable to novel classes g

liver: [1,0,0,0,0,0] 9

liver tumor: [0,1,0,0,0,0] 3 .
left kidney: [0,0,1,0,0,0] s
right kidney: [0,0,0,1,0,0] g
kidney tumor: [0,0,0,0,1,0]

hepatic vessel: [0,0,0,0,0,1]



DSC (%)

1.

A1. Rank first in public datasets

= A performance demonstration on Medical Segmentation Decathlon (measured by DSC score)
= The improvement over the previous SOTA is quite significant

Challenge Leaderboard

Search:
# 4 User (Team) Created Mean Position
1st 3 liujie jay98 & (Universal Model) 26 Nov. 2022 8.2
100 — 96.5 94.1 96.7 95.8
82.7 g0 1 62.1
80 — 71.9 67.1 68.9 60.8 69.4 68.6 .
57.9 62.6 2.3 £ B Universal Model
60 |l| i % i Il‘ ' |l‘ @ Swin UNETR (SOTA)
== T T T | | T |
Liv Liv Tumor Lung Tumor Pan Pan Tumor HepaticVes  Hepatic Tumor Spl Colon Tumor

Tang, Y., Yang, D., Li, W., Roth, H. R., Landman, B., Xu, D., ... & Hatamizadeh, A. (2022). Self-supervised pre-training of swin transformers for 3d medical image analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 20730-20740).



A2. Computation efficiency

= Universal Model is computationally efficient compared with dataset-specific models.

2 zeo

Ours: One for All (Ave: 14.22 s/scan) Others: 6 models for 6 tasks (Ave: 190.26 s/scans)
Include load data time and inference time




A2. Computation efficiency

Universal Model is computationally efficient compared with dataset-specific models.
19x faster than nnU-Net (2nd best in performance) and 6x faster than Swin UNETR (3rd best)
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A3. Generalize to other datasets

Universal Model outperforms other dataset-specific models without being trained on those datasets.

3D-IRCADb spleen  kidneyR kidneyL  gallbladder liver stomach pancreas lungR lungL  mDSC* mDSC
SegResNet [48] 94.08 80.01 91.60 69.59 95.62 89.53 79.19 N/A N/A N/A 85.66
nnFormer [71] 93.75 88.20 90.11 62.22 94.93 87.93 78.90 N/A N/A N/A 85.14
UNesT [65] 94.02 84.90 94.95 68.58 95.10 89.28 79.94 N/A N/A N/A 86.68
TransBTS [56] 91.33 76.22 88.87 62.50 94.42 85.87 63.90 N/A N/A N/A 80.44
TransUNet [6] 94.09 82.07 89.92 63.07 95.55 89.12 79.53 N/A N/A N/A 84.76
UNETR [16] 92.23 91.28 94.19 56.20 94.25 86.73 72.56 91.56 93.31 85.81 83.92
Swin UNETR [52] 93.51 66.34 90.63 61.05 94.73 87.37 73.77 93.72 92.17 83.69 81.05
Universal Model 95.76 94.99 94.42 88.79 97.03 89.36 80.99 97.71 96.72 92.86 91.62
JHH spleen  kidneyR kidneyL.  gallbladder liver stomach pancreas  arota postcava vein mDSC
SegResNet [48] 93.11 89.92 87.84 74.62 95.37 87.90 76.33 84.05 79.36 57.13 82.56
nnFormer [71] 86.71 87.03 84.28 63.37 91.64 73.18 71.88 84.73 78.61 55.31 77.67
UNesT [65] 93.82 90.42 89.04 76.40 95.30 89.65 78.97 84.36 79.61 59.70 83.73
TransBTS [56] 85.47 81.58 82.00 60.58 92.50 72.29 63.25 83.47 75.07 55.38 75.16
TransUNet [6] 94.63 89.86 89.61 77.28 95.85 88.95 79.98 85.06 81.02 59.76 84.20
UNETR [16] 91.89 89.07 87.60 66.97 91.48 83.18 70.56 82.92 75.20 57.53 79.64
Swin UNETR [52] 92.23 84.34 82.95 74.06 9491 82.28 71.17 85.50 79.18 55.11 80.17
Universal Model 93.94 91.53 90.21 84.15 96.25 92.51 82.72 77.35 79.64 57.10 84.54




A4. High-quality pseudo labels

We demonstrate the pseudo label quality (Al) for the six organs is comparable to human annotators (Dr1, Dr2)
If we spend a lot more money to ask radiologists to annotate these six organs, it might turn out that our
pseudo labels can do a similar quality annotation (which is a waste of money and time).
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A4. High-quality pseudo labels

We demonstrate the pseudo label quality (Al) for the six organs is comparable to human annotators (Dr1, Dr2)
If we spend a lot more money to ask radiologists to annotate these six organs, it might turn out that our
pseudo labels can do a similar quality annotation (which is a waste of money and time).

We have completed the missing labels in 14 public datasets and will release a dataset of 3,410 CT scans with six

organs annotated by high-quality pseudo labels. (Some refinement of pseudo labels is required)

We encourage the research community fo concentrate on creating aatasets of the harder organs/tumors



A5. Transferability to downstream tasks

Universal Model can be used for fine-tuning, performing better than many famous medical Foundation Models

The benefit of existing self-supervised learning for downstream tasks is indirect
New scheme: pre-training by segmenting

Method TotalSeg_vertebrae ~ TotalSeg_cardiac TotalSeg_muscles TotalSeg_organs JHH _cardiac JHH _organs
Scratch 81.06 84.47 88.83 86.42 71.63 89.08
MedicalNet [£] 82.28 87.40 91.36 86.90 58.07 77.68
Models Gen. [79] 85.12 86.51 89.96 85.78 74.25 88.64
Swin UNETR [52] 86.23 87.91 92.39 88.56 67.85 87.21
UniMiSS [61] 85.12 88.96 92.86 88.51 69.33 82.53
Universal model 86.49 89.57 94.43 88.95 72.06 89.37




Looking forward

Participate in upcoming MICCAI, RSNA, Grand Challenges for medical image segmentation
Generalizability, transferability, computational efficiency

Continual and incremental learning for novel classes that will be annotated in the future
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e.g., other fine-grained types of cancer



Synthetic Tumors Make Al Segment Tumors Better

Qixin Hu', Yixiong Chen?, Junfei Xiao3, Shuwen Sun?, lie-Neng Chen?,
Alan Yuille?, and Zongwei Zhou®*

"Huazhong University of Science and Technolo 2Fudan University
9 y 9y
3Johns Hopkins University “The First Affiliated Hospital of Nanjing Medical University

Github: https://github.com/MrGiovanni/SyntheticTumors



Training paradigm shift

Old paradigm: Al models segment tumors from images (label-intensive)

New paradigm: Tumors are generated for Al models to segment them (label-free)
Realistic tumors
Effective training




Liver tumor generator

Texture Generation

Location Selection

Scaling & Gaussian
Generation Interpolation Filtering
¢ Capsule
. ! Appearance
Mask Shape Generation i g

Vessel Collision

Segmentation

Detection

Generate Elastic

Ellipsoid Deformation Edge Blurring

1. Hu, Q., Xiao, J., Chen, Y., ... & Zhou, Z. (2022). “Synthetic Tumors Make Al Segment Tumors Better.” Medical Imaging Meets NeurlPS, 2022.



Liver tumor generator

How to (empirically) make the synthetic tumors more realistic?
Position prior: >60% of the tumors are on the lowest 1/3 of the liver

Shape prior: larger tumors usually have more irregular shapes
Color and texture prior: larger tumors are usually brighter with richer textures




A1. Small domain gap between real and synthetic tumors

We estimate the domain gap by two measures
(1) Vision Turing Test!
Performed by two medical professionals (6-year and 30-year experience)

A total of 50 CT scans are used: 30 are real, 20 are synthetic (professionals do not know this)
Medical professionals must assign “real (1)”, “synthetic (-1)", or “cannot tell (0)” to each CT scan

1. Geman, D., Geman, S., Hallonquist, N. and Younes, L., 2015. Visual turing test for computer vision systems. Proceedings of the National Academy of Sciences, 112(12), pp.3618-3623.



Medical professionals with over 6-year experience cannot tell which are real and which are synthetic tumor
with an accuracy of 20% (/ower than random guess)




A1. Small domain gap between real and synthetic tumors

We estimate the domain gap by two measures

(I) Quantitative evaluation on the tests set of real and synthetic tumors.
Test on real tumors: 22 CT scans from LiTS
Test on synthetic tumors: 22 CT scans from CT-ORG

Test on real tumors Test on synthetic tumors

Al trained with rea/tumors 52.3

Al trained with synthetic tumors 52.0



A2. Al trained with synthetic tumors ~ with real tumors

The quantitative result is exciting because no previous synthetic tumor has achieved a similar or even close
performance to real tumors.

Essentially, we won the liver tumor segmentation challenge (MSD-Liver) while not using any annotation provided
by this challenge, outperforming top teams who trained Al using 101 annotated CT scans.

training data | fold 0 fold 1 fold 2 fold 3 fold 4 | average
real 55.35 50.32 64.41 54.17 55.35 55.92
synt 55.26 53.02 65.44 54.14 54.82 56.52

real: previous top 1 team on MSE challenge (Swin UNETR Base).

1. Tang, Y., Yang, D., Li, W., Roth, H. R., Landman, B., Xu, D., ... & Hatamizadeh, A. (2022). Self-supervised pre-training of swin transformers for 3d medical image analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 20730-20740).



Training Al on synthetic tumors performs almost as well as training it on real tumors.

CT Al prediction Al prediction
trained on real tumors trained on synthetic tumors
with per-voxel annotation with no annotation
® Liver

@ Liver tumor

1. Hu, Q., Xiao, J., Chen, Y., ... & Zhou, Z. (2022). “Synthetic Tumors Make Al Segment Tumors Better.” Medical Imaging Meets NeurlPS, 2022.



A3. Al trained with synthetic tumors generates less FPs

The tumor dataset usually provides a lot more positive examples than negative examples. Although the model is
good at detecting liver tumors, it offers a low specificity on the healthy CT scans in the inference.

Ours: The datasets are diverse, consisting of a large number positive and negative examples (as control).

Specificity = TN/(TN+FP) =
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MSD-Colon



A4. Al trained with synthetic tumors can detect tiny tumors
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concept

examples

A5. Controllable robustness benchmark

The limitations of Al models in tumor segmentation are not fully studied.

There are only 70 CT scans available for evaluating Al in MSD-Liver
Synthetic tumors enable us to perform an extensive evaluation of these models in segmenting liver tumors that
vary from different conditions.

Shape, size, texture, intensity, location, etc.

texture intensity location




Looking forward

= We plan to generate synthetic tumors in
many more organs

= |n the future, annotations are still needed,

but these annotations will be only used for
evaluation

o Colon tumors: 126 examples

o Liver tumors: 131 examples

o Pancreas tumors: 282 examples
o Kidney tumors: 300 examples

o More fine-grained tumor types...
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Summary

Detecting and Segmenting Cancers (Not Cancer)
How can we deal with many other types of tumors?

Two perspectives

. Exploiting existing public datasets and their [sElgiElRellglo el
Universal Model GitHub: coming soon

Label-Assemble GitHub: hitps.//qithub.com/MrGiovanni/LabelAssemble

Il.  Exploring the potential of SINERIGEEIEUIWEN (€.g., synthetic tumors)
Synthetic Tumors GitHub: hiips.//qithub.com/MrGiovanni/Synthetic lumors



https://github.com/MrGiovanni/LabelAssemble
https://github.com/MrGiovanni/SyntheticTumors

Towards Annotation-Efficient (-free)Deep Learning

|
gnotation-free deep learning Annotation-efficient deep learning
=
3 “Learning curve” of the best deep learning model
=
o

Amount of annotated data (time & money)

1. Zhou, Z. (2021). Towards annotation-efficient deep learning for computer-aided diagnosis (Doctoral dissertation, Arizona State University).



