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Goal: Minimize manual annotation efforts for rapid, precise
computer-aided diagnosis systems.
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Goal: Minimize manual annotation efforts for rapid, precise
computer-aided diagnosis systems.

1. Acquiring necessary annotation efficiently from human experts.
e Active, Continual Fine-Tuning (ACFT)
e (CVPR-2017, MedlA-2021, MIDL-2023
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Goal: Minimize manual annotation efforts for rapid, precise
computer-aided diagnosis systems.

1. Acquiring necessary annotation efficiently from human experts.

2. Utilizing existing annotation effectively from advanced models.
* UNet++

 MICCAIW-2018, IEEE TMI-2019 (Most Popular Articles)
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Goal: Minimize manual annotation efforts for rapid, precise
computer-aided diagnosis systems.

1. Acquiring necessary annotation efficiently from human experts.
2. Utilizing existing annotation effectively from advanced models.
3. Extracting generic knowledge directly from unannotated images.
* Models Genesis
 MICCAI-2019 (Young Scientist Award), MedIA-2020 (Best Paper
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Goal: Minimize manual annotation efforts for rapid, precise
computer-aided diagnosis systems.

1. Acquiring necessary annotation efficiently from human experts.
2. Utilizing existing annotation effectively from advanced models.
3. Extracting generic knowledge directly from unannotated images.
——PhD dissertation (AMIA Doctoral Dissertation Award)——
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Goal: Minimize manual annotation efforts for rapid, precise
computer-aided diagnosis systems.

y e

1. Acquiring necessary annotation efficiently from human experts.
2. Utilizing existing annotation effectively from advanced models.
3. Extracting generic knowledge directly from unannotated images.
——PhD dissertation (AMIA Doctoral Dissertation Award)——

4. Exploring ultra-weak annotation (radiology reports, synthetic data).
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Medical professionals with over 6-year experience cannot tell which are real and which are synthetic tumors
with an accuracy of 20% (lower than random guess)

Hu, Qixin, Yixiong Chen, Junfei Xiao, Shuwen Sun, Jieneng Chen, Alan Yuille, and Zongwei Zhou. "Label-Free Liver Tumor Segmentation." CVPR-2023.



Training Al on synthetic tumors performs almost as well as training it on real tumors.

Al prediction Al prediction
o) trained on real tumors trained on synthetic tumors
with per-voxel annotation with no annotation
DSC = 58% [52% - 63%)] DSC = 60% [55% - 65%)]
@ Liver

‘ Liver tumor

Hu, Qixin, Yixiong Chen, Junfei Xiao, Shuwen Sun, Jieneng Chen, Alan Yuille, and Zongwei Zhou. "Label-Free Liver Tumor Segmentation." CVPR-2023.
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Goal: Earlier detection of pancreatic neoplasms in CT scans using deep learning.
* 40,000,000 abdominal CT scans are performed each year in the United States.
* 1/3 of PDACs in these scans are missed by Radiologists. Early signs of PDAC can be subtle.
* Deep Learning can see things in images that most humans miss.
e Pancreas tumors: 5,038 annotated CT scans in Johns Hopkins w Sensitivity=97%, Specificity=99%

* This dataset took 15 years to annotate for a human.
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Goal: Earlier detection of pancreatic neoplasms in CT scans using deep learning.
* 40,000,000 abdominal CT scans are performed each year in the United States.
* 1/3 of PDACs in these scans are missed by Radiologists. Early signs of PDAC can be subtle.
 Deep Learning can see things in images that most humans miss.
e Pancreas tumors: 5,038 annotated CT scans in Johns Hopkins w Sensitivity=97%, Specificity=99%

* This dataset took 15 years to annotate for a human

Goal: Earlier detection of panereatic-reeplasms cancers in CT scans using deep learning.

* Body Maps: This concept is similar to Google Maps, but it focuses on human anatomy rather than the Earth's
geography. Body Maps offer several features:

* (1) In-depth segmentation of anatomical structures.
e (2) Disease screening across various structures.
e (3) Language interaction between users and systems.

Two recently awarded grants: McGovern (5400,000) and Lustgarten (51,922,421), where | served as Team Investigator.



The first-place solution in Medical Segmentation Decathlon (MSD)
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Liu, Jie, Yixiao Zhang, Jie-Neng Chen, Junfei Xiao, Yongyi Lu, Bennett A. Landman, Yixuan Yuan, Alan Yuille, Yucheng Tang, and Zongwei Zhou. "CLIP-Driven
Universal Model for Organ Segmentation and Tumor Detection." arXiv preprint arXiv:2301.00785 (2023).



The first-place solution in Medical Segmentation Decathlon (MSD)
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Liu, Jie, Yixiao Zhang, Jie-Neng Chen, Junfei Xiao, Yongyi Lu, Bennett A. Landman, Yixuan Yuan, Alan Yuille, Yucheng Tang, and Zongwei Zhou. "CLIP-Driven
Universal Model for Organ Segmentation and Tumor Detection." arXiv preprint arXiv:2301.00785 (2023).
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e Sensors, Special Issue on “Advances of Deep Learning in Medical Image Interpretation”
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Biomedicine, IEEE Transactions on Biomedical Engineering, Journal of Biomedical and Health Informatics, IEEE Access,
Journal of Biomedical Informatics
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