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Motivation: Annotating biomedical images is
very challenging. It is not only tedious and time

consuming, but also demanding of costly, specialty-oriented
knowledge and skills, which are not easily accessible.

Key Ideas:

1. Active selection: consistency among the patches generated
from a candidate.

2. Handling noisy labels: majority selection.

3. Continuous fine-tuning: fine-tuning the fine-tuned CNN.

Advantages:

1. Starting with a completely empty labeled dataset.

. Incrementally improving the learner through continuous
fine-tuning rather than repeatedly re-training.

. Naturally exploiting expected consistency among the patches
associated for each candidate to select samples “worthy” of
labeling.

. Automatically handling noisy labels as only a portion of
the patches in each candidate participates in the selection
process.

. Computing entropy and diversity locally on a small number
of patches within each candidate, saving computation time
considerably.
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Method: Integrating active learning and transfer learning.

Algorithm 1: Active incremental fine-tuning method.

Input:
U ={Ci},1 € [1,n| {U contains n candidates}
C; ={xl}, 7 € [1,m] {C; has m patches}
M pre-trained CNN
b: batch size
a: patch selection ratio
Output:
L: labeled candidates
M, fine-tuned CNN model at Iteration ¢
Functions:
p < P(C, M) {outputs of M given Vx € C}
My «— F (L, My—_1) {fine-tune M;_; with L}
a < mean(p;) {a = - > 7" pl)
Initialize:
L<+— O
repeat
‘ for each C; € U do
pi < P(Ci, M¢_1)
if mean(p;) > 0.5 then
S! <+ top « percent of the patches of C;

s-p k-

else

o

S. <+ bottom « percent of the patches of C;

end
Build matrix R; using Eq. 3 for S;

-

end

11 Sort U according to the numerical sum of R;

B? Query labels for top b candidates, yielding O
L+—LJQ, U+~U\Q
My F(,C,Mt—l)

until classification performance is satisfactory;

” Get the prediction of unlabeled data.
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E Compute the average probabilistic prediction of all of its patches.

1 m 1 21
ai=n—12p’i =HZp]i = 0.4705 < 0.5
J=1 J=1

E Select the top a percent patches when a; > 0.5, otherwise bottom a.

E Construct the score matrix using either entropy or diversity quota.

Y| am 2 5
” K : :
ei=—ZZp]i -log p/ =—22p’i-logp£=0.2440
k=1 j=1 k=1 j=1
Y| am am i k

0.2964

p;
— p:'k) . log ;,k =
P;

0.2440 0.2397 0.2393 0.0000

0.2385 0.2377

diversity
- - m
pattern L -
0.4 0.5 0006 0.009 0.0 0.0 0.9 1.0 0.0 0.2 0.0 0.9
0.4 0.5 0.10.7 0.01.0 0.0 0.1 0.9 1.0 0.0 0.2 0.10.9
Example 0.4 0.5 0208 0.01.0 0.0 0.1 0.9 1.0 0.0 0.3 0.7 1.0
P 0506 0310 0.11.0 0.0 0.1 0.9 1.0 0109 0.81.0
0506 0410 0.11.0 0.0 0.1 1.0 1.0 0.11.0 0.81.0
0.6 0.4 0.9 0.0 1.0 0.1 0.9
entropy 4.57 1.30 1.30 1.30 3.24 3.24
entropy“ 0.83 0.00 0.00 0.00 0.33 0.33
diversity 4.38 1237.21 QAIGHIM 189.54  189.54 1076.87 1076.87
diversity®  0.00 0.00 0.00 13.54 13.54

Observations:

1. Patterns A and B are dominant in the earlier stages as the CNN has not been fine-tuned properly to the target domain.
2. Patterns C, D and E are dominant in the later stages of AIFT as the CNN has been largely fine-tuned on the target dataset.

3. The majority selection is effective in excluding Patterns C, D, and E.

4. prefers Pattern B while Diversity prefers Pattern C. This is why AIFT Diversity may cause sudden disturbances in the CNN's performance.

5. Patterns B, F, and G generally make good contributions to elevating the current CNN's performance.

diversity“ entropy entropy”
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Cut ~63% annotation cost.
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Cut ~60% annotation cost.
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