





## **Method:** Integrating active learning and transfer learning.

Input: 1 repeat 14

#### **Motivation:** Annotating biomedical images is very challenging. It is not only tedious and time consuming, but also demanding of costly, specialty-oriented

knowledge and skills, which are not easily accessible.

### **Key Ideas:**

- **1.** Active selection: consistency among the patches generated from a candidate.
- 2. Handling noisy labels: majority selection.
- 3. Continuous fine-tuning: fine-tuning the fine-tuned CNN.

#### **Advantages:**

- 1. Starting with a completely **empty** labeled dataset.
- 2. Incrementally improving the learner through **continuous fine-tuning** rather than repeatedly re-training.
- 3. Naturally exploiting expected consistency among the patches associated for each candidate to select samples "worthy" of labeling.
- 4. Automatically handling **noisy labels** as only a portion of the patches in each candidate participates in the selection process.
- 5. Computing entropy and diversity **locally** on a small number of patches within each candidate, saving computation time considerably.

#### **References:**

- N. Tajbakhsh, et.al. Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE TMI, 2016.
- I. Guyon, et al. Active Learning Challenge. Microtome Publishing, 2011.

#### **Illustration:** Seven fundamental prediction patterns.

| pattern                                  | # A<br>0 1 <sup>P</sup>                                    | # B<br>0 1                                                 | # C<br>0 1                                                                     | # D<br>0 1 <sup>P</sup>                                                                                          | # E<br>0 1                                                 | ¶<br>0                     |
|------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------|
| Example                                  | 0.4 0.5<br>0.4 0.5<br>0.4 0.5<br>0.5 0.6<br>0.5 0.6<br>0.6 | 0.0 0.6<br>0.1 0.7<br>0.2 0.8<br>0.3 1.0<br>0.4 1.0<br>0.4 | $0.0 \ 0.9$<br>$0.0 \ 1.0$<br>$0.0 \ 1.0$<br>$0.1 \ 1.0$<br>$0.1 \ 1.0$<br>0.9 | $\begin{array}{c} 0.0 \ 0.0 \\ 0.0 \ 0.1 \\ 0.0 \ 0.1 \\ 0.0 \ 0.1 \\ 0.0 \ 0.1 \\ 0.0 \ 0.1 \\ 0.0 \end{array}$ | 0.9 1.0<br>0.9 1.0<br>0.9 1.0<br>0.9 1.0<br>1.0 1.0<br>1.0 | 0<br>0<br>0<br>0<br>0<br>0 |
| entropy                                  | 7.52                                                       | 4.57                                                       | 1.30                                                                           | 1.30                                                                                                             | 1.30                                                       |                            |
| entropy <sup>α</sup>                     | 2.02                                                       | 0.83                                                       | 0.00                                                                           | 0.00                                                                                                             | 0.00                                                       |                            |
| diversity                                | 4.38                                                       | 1237.21                                                    | 2816.66                                                                        | 189.54                                                                                                           | 189.54                                                     | 1                          |
| diversity <sup><math>\alpha</math></sup> | 0.00                                                       | 20.79                                                      | 0.00                                                                           | 0.00                                                                                                             | 0.00                                                       |                            |

#### **Observations:**

1. Patterns A and B are dominant in the earlier stages as the CNN has not been fine-tuned properly to the target domain.

- 2. Patterns C, D and E are dominant in the later stages of AIFT as the CNN has been largely fine-tuned on the target dataset. 3. The majority selection is effective in excluding Patterns C, D, and E.
- 5. Patterns B, F, and G generally make good contributions to elevating the current CNN's performance.

# **Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally**

Zongwei Zhou<sup>a</sup>, Jae Y. Shin<sup>a</sup>, Lei Zhang<sup>a</sup>, Suryakanth R. Gurudu<sup>b</sup>, Michael B. Gotway<sup>c</sup>, and Jianming Liang<sup>a</sup> <sup>a</sup> Department of Biomedical Informatics, Arizona State University, Scottsdale, AZ 85259 <sup>b</sup> Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ 85259 <sup>c</sup> Department of Radiology, Mayo Clinic, Scottsdale, AZ 85259









4. prefers Pattern B while Diversity prefers Pattern C. This is why AIFT Diversity may cause sudden disturbances in the CNN's performance.

#### **Acknowledgements:**

This research has been supported partially by the NIH NHLBI under Award Number R01HL128785, by an ASU-Mayo Seed Grant, and by an ASU-Mayo Innovation Grant. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.





#### **1.** Colonoscopy frame classification



### 2. Pulmonary embolism detection



### **3. Polyp detection**





|  | Cut ~60% annotation cost.              |                                                                                  |                      |        |      |  |  |  |  |
|--|----------------------------------------|----------------------------------------------------------------------------------|----------------------|--------|------|--|--|--|--|
|  |                                        |                                                                                  |                      |        |      |  |  |  |  |
|  |                                        | AIFT                                                                             | Diversit<br>Diversit | у<br>У |      |  |  |  |  |
|  |                                        | AIFT (Entropy+Diversity) <sup><math>1/4</math></sup><br>AIFT (Entropy+Diversity) |                      |        |      |  |  |  |  |
|  | -AIFT $Entropy^{1/4}$                  |                                                                                  |                      |        |      |  |  |  |  |
|  | AIFT Entropy                           |                                                                                  |                      |        |      |  |  |  |  |
|  | —IFT Random<br>—-Learning from scratch |                                                                                  |                      |        |      |  |  |  |  |
|  | 500 20<br>ber of lab                   |                                                                                  |                      | 000    | 3500 |  |  |  |  |