
Motivation: Annotating biomedical images is 
very challenging. It is not only tedious and time 
consuming, but also demanding of costly, specialty-oriented 
knowledge and skills, which are not easily accessible. 
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1. Active selection: consistency among the patches generated
from a candidate.

2. Handling noisy labels: majority selection.
3. Continuous fine-tuning: fine-tuning the fine-tuned CNN.

Key Ideas: 

1. Starting with a completely empty labeled dataset.
2. Incrementally improving the learner through continuous

fine-tuning rather than repeatedly re-training.
3. Naturally exploiting expected consistency among the patches

associated for each candidate to select samples “worthy” of
labeling.

4. Automatically handling noisy labels as only a portion of
the patches in each candidate participates in the selection
process.

5. Computing entropy and diversity locally on a small number
of patches within each candidate, saving computation time
considerably.

Advantages:

Method: Integrating  active learning and transfer  learning.
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Compute the average probabilistic prediction of all of its patches.2

Select the top 𝛼 percent patches when	𝑎B > 0.5, otherwise bottom 𝛼.3

Construct the score matrix using either entropy or diversity quota.4

Query labels for top frames according to their quota value.5

Get the prediction of unlabeled data.1
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Applications: Cutting annotation cost at least in half.
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Illustration: Seven fundamental prediction patterns.

1. Patterns A and B are dominant in the earlier stages as the CNN has not been fine-tuned properly to the target domain.
2. Patterns C, D and E are dominant in the later stages of AIFT as the CNN has been largely fine-tuned on the target dataset.
3. The majority selection is effective in excluding Patterns C, D, and E.
4. prefers Pattern B while Diversity prefers Pattern C. This is why AIFT Diversity may cause sudden disturbances in the CNN's performance.
5. Patterns B, F, and G generally make good contributions to elevating the current CNN's performance.

Observations:
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Cut ~63% annotation cost.

1. Colonoscopy frame classification

Cut ~60% annotation cost.

2. Pulmonary embolism detection

Cut ~62% annotation cost.

3. Polyp detection
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