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Introduction

 Challenge: labels in public medical datasets are often incomparable, heterogeneous, or even conflicting

* Question: Can we integrate and exploit such a great number of publicly available datasets with partial labels to achieve an improved computer-aided diagnosis and
detection of specific diseases?

* Principal hypothesis: a dataset that is labeled with various classes can foster more powerful models than one that is only labeled with the class of interest.

* Method (label-assemble): 1) a new class query to encode different visual tasks, which can dynamically integrate partial labels across different datasets; 2) pseudo
labels and consistency constraints are introduced for the missing part of labels and for mitigating the domain gap across different datasets.

» Validation: effectiveness of Label-Assemble in both computer-aided disease diagnosis and detection, supported by two clinical applications.

Motivation

* With the same amount of data, learning from classes of “negative examples” benefits the learning of the interested class.
 Verified by six classification tasks and two detection tasks.
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Label-Assemble
Dynamic adapter with learnable class queries:
- strong E iTr?Sg(;u;[E)u;S(.a) is dynamically generated by class queries (q) and input
| augmentation icti '
’.’ | head W where w(:) parameterized with 6, transforms class queries into
L ‘ classification weights and f(-) is the pre-trained feature extractor.
feature L’COHS!St . .
COVID-19 dataset mimimls Pseudo labels & consistency constraints:
1 000 annotation To unleash the full potential of unannotated labels, we introduce a
G sharpening operator to generate pseudo-labels:
5= a+(1—a)/t a=>T7
weak ~ ~la—a/t a<Tt
augmentation prediction & » L. wheret is the sharpen temperature and 7 is the threshold (7=0.5 in
head | our experiments).
& A Loss to guide self-training on unlabeled data:
feature Liseudo = Iy, —ay,ll;
IR IO where a,, denotes the answer of weakly augmented images.

non-COVID public datasets
>100,000 annotation

Consistency loss can be formulated as:

Lconsist — “as o dwl |2
where a, denotes the answer of strongly augmented images.

class queries

Overall loss function:
Ltotal — Lbce T Lpseudo + Lconsist
where L, is the binary cross-entropy loss.

Experimental Results

> Label-Assemble outperforms other methods developed for partial labels, and performs on par with the method of learning from full labels

CheXpert (val) ChestX-rayl4 (val)
Method #labels | Card? Pneul”™ Atel’! Edema Effusion Average | Cons? Pneu2’ Atell Edema Effusion Average
DenseNet [19] 37,655 0.646  0.461 0.431 0.791 0.800 0.626 0.693 0.640 0.688  0.737 0.783 0.708
Med3D [20] 75,310 0.751 0.629  0.663 0.839 0.836 0.744 0.700  0.758 0.718  0.732 0.788 0.739
DoDNet [10] 75,310 0.778  0.598 0.646  0.859 0.845 0.745 0.706  0.756  0.721 0.745 0.769 0.740
Ours 75,310 0.832  0.675 0.702  0.867 0.886 0.792 0.744  0.805 0813 0.710 0.778 0.770
DenseNet [19] 105,434 | 0.835 0.683 0.699 0.864 0.885 0.793 0.719 0810 0.740 0.811 0.812 0.778

TCard, Pneul, Atel, Cons, Pneu2 denote Cardiomegaly, Pneumonia, Atelectasis, Consolidation Pneumothorax, respectively.

] Assembling 4,060 lung nodule images with public data

> Label-Assemble achieves the best mean performance over all 14 thorax > Assembling labels of other chest

2 0.80- e B
diseases on ChestXray-14 (official split). diseases improves lung nodule g 2 ¥ S M
classification. "1 . s e s fsf s 5L -
_ Ref. & Year Architecture mAUC » The performance gain is positively g o704 s :tmnnaNnaNat
Ma et al. [23] MICCAI 2019 DenseNet (X2) 0.817 correlated to inter-class similarit < |-| ” H ” H ”
Hermoza et al. [22] MICCAI 2020 DenseNetl121 0.821 Y 0.65- B ' j s 11
Kim et al. [21] CVPR 2021 DenseNet121 0.822 between nodule and the assembled P ORISR o"b O O
Taslimi et al. [24] arXiv 2022 SwinT 0.810 disease. The Pearson Coefficient is 1 & ¢ o 2 € & 2 & & \o@&&o\“”o@“”
Xiao et al. [25] WACV 2022 ViT-S 0.823 - 0.83; p = 4.93e-4 A T T T
Ours DenseNet121 0.832 Y ' ' "
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