

Label-Assemble: Leveraging Multiple Datasets with Partial Labels

Mintong Kang¹, Bowen Li², Zengle Zhu³, Yongyi Lu², Elliot K. Fishman⁴, Alan Yuille², Zongwei Zhou²

¹University of Illinois Urbana-Champaign²Johns Hopkins University³Tongji University⁴Johns Hopkins University School of Medicine

Introduction

- **Challenge**: labels in public medical datasets are often incomparable, heterogeneous, or even conflicting
- **Question**: Can we integrate and exploit such a great number of publicly available datasets with *partial labels* to achieve an improved computer-aided diagnosis and detection of specific diseases?
- **Principal hypothesis:** a dataset that is labeled with various classes can foster more powerful models than one that is only labeled with the class of interest.
- Method (label-assemble): 1) a new class query to encode different visual tasks, which can dynamically integrate partial labels across different datasets; 2) pseudo lacksquarelabels and consistency constraints are introduced for the missing part of labels and for mitigating the domain gap across different datasets.
- Validation: effectiveness of Label-Assemble in both computer-aided disease diagnosis and detection, supported by two clinical applications.

Motivation

- With the same amount of data, learning from classes of "negative examples" benefits the learning of the interested class.
- Verified by six classification tasks and two detection tasks.

Dynamic adapter with learnable class queries:

The output (*a*) is dynamically generated by class queries (*q*) and input image (x) as:

 $a = w(q; \theta_w) * f(x)$

where $w(\cdot)$ parameterized with θ_w transforms class queries into classification weights and $f(\cdot)$ is the pre-trained feature extractor.

Pseudo labels & consistency constraints:

To unleash the full potential of unannotated labels, we introduce a sharpening operator to generate pseudo-labels:

$$\tilde{a} = \begin{cases} a + (1 - a)/t & a \ge \tau \\ a - a/t & a \le \tau \end{cases}$$

where *t* is the sharpen temperature and τ is the threshold (τ =0.5 in our experiments).

Loss to guide self-training on unlabeled data:

 $\mathcal{L}_{\text{pseudo}} = ||a_w - \tilde{a}_w||_2$ where a_w denotes the answer of weakly augmented images. Consistency loss can be formulated as:

 $\mathcal{L}_{\text{consist}} = ||a_s - \tilde{a}_w||_2$ where a_s denotes the answer of strongly augmented images.

Overall loss function:

 $\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{bce}} + \mathcal{L}_{\text{pseudo}} + \mathcal{L}_{\text{consist}}$ where \mathcal{L}_{bce} is the binary cross-entropy loss.

Experimental Results

> Label-Assemble outperforms other methods developed for partial labels, and performs on par with the method of learning from *full* labels

		CheXpert (val)					ChestX-ray14 (val)						
Method	# labels	Card [†]	Pneu1 [†]	Atel [†]	Edema	Effusion	Average	Cons [†]	Pneu2 [†]	Atel [†]	Edema	Effusion	Average
DenseNet [19]	37,655	0.646	0.461	0.431	0.791	0.800	0.626	0.693	0.640	0.688	0.737	0.783	0.708
Med3D [20]	75,310	0.751	0.629	0.663	0.839	0.836	0.744	0.700	0.758	0.718	0.732	0.788	0.739
DoDNet [10]	75,310	0.778	0.598	0.646	0.859	0.845	0.745	0.706	0.756	0.721	0.745	0.769	0.740
Ours	75,310	0.832	0.675	0.702	0.867	0.886	0.792	0.744	0.805	0.813	0.710	0.778	0.770
DenseNet [19]	105,434	0.835	0.683	0.699	0.864	0.885	0.793	0.719	0.810	0.740	0.811	0.812	0.778

[†]Card, Pneu1, Atel, Cons, Pneu2 denote Cardiomegaly, Pneumonia, Atelectasis, Consolidation Pneumothorax, respectively.

> Label-Assemble achieves the best mean performance over all 14 thorax diseases on ChestXray-14 (official split).

	Ref. & Year	Architecture	mAUC
Ma et al. [23]	MICCAI 2019	DenseNet ($\times 2$)	0.817
Hermoza et al. [22]	MICCAI 2020	DenseNet121	0.821
Kim et al. [21]	CVPR 2021	DenseNet121	0.822
Taslimi et al. [24]	arXiv 2022	SwinT	0.810
Xiao et al. [25]	WACV 2022	ViT-S	0.823
Ours		DenseNet121	0.832

Assembling labels of other chest diseases improves lung nodule classification.

> The performance gain is positively correlated to inter-class similarity between nodule and the assembled disease. The Pearson Coefficient is r = 0.83; p = 4.93e-4.

