



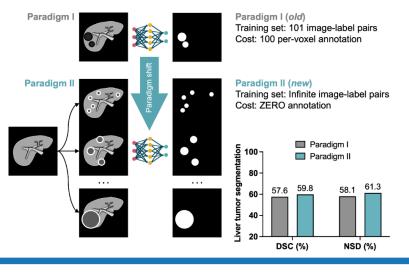




# **Label-Free Liver Tumor Segmentation**

Qixin Hu<sup>1</sup>, Yixiong Chen<sup>2</sup>, Junfei Xiao<sup>3</sup>, Shuwen Sun<sup>4</sup>, Jieneng Chen<sup>3</sup>, Alan Yuille<sup>3</sup>, Zongwei Zhou<sup>3, 🔀</sup> <sup>1</sup>Huazhong University of Science and Technology, <sup>2</sup>The Chinese University of Hong Kong – Shenzhen, <sup>3</sup>Johns Hopkins University, <sup>4</sup>The First Affiliated Hospital of Nanjing Medical University





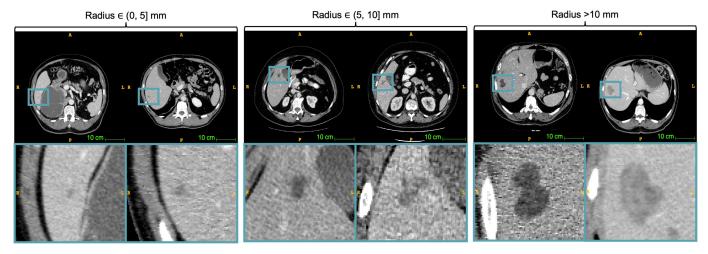




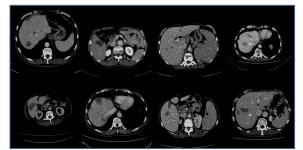



#### Tumor segmentation paradigm shift from label-intensive to label-free.




#### Paradigm I (old)

- Per-voxel annotations.
- Time-consuming, expansive.
- Requires extensive medical expertise.

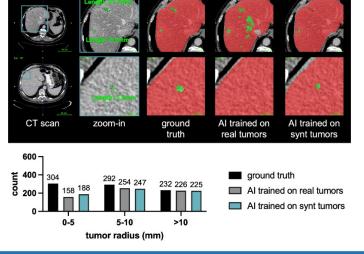

### Paradigm II (new)

- ZERO annotations.
- Infinite training pairs
- Similar performance.

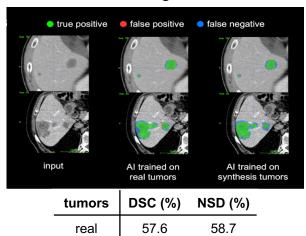
### Can you tell which liver tumors are real and which are fake?



#### Even *professionals* can't distinguish synthetic tumors from

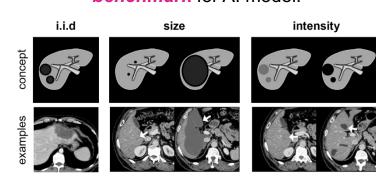



|    |                          | junior pro | ofessional               | senior professional |                                     |  |
|----|--------------------------|------------|--------------------------|---------------------|-------------------------------------|--|
|    |                          | real (P)   | $\operatorname{synt}(N)$ | real (P)            | $\operatorname{synt}\left(N\right)$ |  |
| th | real(P)                  | 5          | 15                       | 10                  | 2                                   |  |
| 呈  | $\operatorname{synt}(N)$ | 21         | 8                        | 7                   | 12                                  |  |


<sup>&</sup>lt;sup>1</sup>The junior professional achieves an Accuracy, Sensitivity, and Specificity of 26.5%, 27.6%, and 25.0%. One CT scan is marked unsure.

<sup>2</sup>The senior professional achieves an Accuracy, Sensitivity, and Specificity of 71.0%, 63.2%, and 83.3%. 19 CT scans are marked unsure

#### Synthetic tumor can benefit small tumor detection.




#### Synthetic tumor is efficient for real tumor segmentation.



## 59.8 61.3

#### Synthetic tumor can provide benchmark for AI model.



|            | size             |                   |                   | intensity        |                   |                   |
|------------|------------------|-------------------|-------------------|------------------|-------------------|-------------------|
|            | $\mu \pm \sigma$ | $\mu \pm 2\sigma$ | $\mu \pm 3\sigma$ | $\mu \pm \sigma$ | $\mu \pm 2\sigma$ | $\mu \pm 3\sigma$ |
| UNet++     | 68.45            | 63.01             | 9.27              | 90.16            | 75.58             | 26.99             |
| nnU-Net    | 80.23            | 59.55             | 5.39              | 91.60            | 83.61             | 30.53             |
| Swin UNETR | 82.62            | 65.95             | 26.08             | 88.95            | 79.36             | 12.87             |
|            |                  |                   |                   |                  |                   |                   |