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Active Learning: What, Why, How?
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“Human in the loop”



A Good Start is Half the Battle, But …
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Part I: The Cold Start Problem in Active Learning 
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How About Active Sampling the Initial Query?
Uncertainty:
ISAL (ICCV, 2021)
Consistency (ECCV, 2020)
Learning loss (CVPR, 2020)
Margin (COLT, 2007)
Entropy (Machine Learning, 1994)
…

Diversity:
CDAL (ECCV, 2020)
Coreset (ICLR, 2018)
Pre-clustering (ICML, 2004)
…

Hybrid:
BADGE (ICLR, 2020)
VAAL (ICCV, 2019)
BALD (NeurIPS, 2019)
…

Uncertainty Sampling Diversity Sampling
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Sampled Data New Query Data



Current Active Samplings Underperform Random Sampling (I)
Uncertainty:
ISAL (ICCV, 2021)
Consistency (ECCV, 2020)
Learning loss (CVPR, 2020)
Margin (COLT, 2007)
Entropy (Machine Learning, 1994)
…

Diversity:
CDAL (ECCV, 2020)
Coreset (ICLR, 2018)
Pre-clustering (ICML, 2004)
…

Hybrid:
BADGE (ICLR, 2020)
VAAL (ICCV, 2019)
BALD (NeurIPS, 2019)
…
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Current Active Samplings Underperform Random Sampling (II)

“Experimental results could not conclusively prove that intelligently sampled initial pools are better 
for AL than random initial pools in the long run.”

Chandra et al. 2020, On Initial Pools for Deep Active Learning
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Current Active Samplings Underperform Random Sampling (II)

“Experimental results could not conclusively prove that intelligently sampled initial pools are better 
for AL than random initial pools in the long run.”

Chandra et al. 2020, On Initial Pools for Deep Active Learning

“We show that although the state-of-the-art active learning methods work well given a large budget 
of data labeling, a simple K-means clustering algorithm can outperform them on low budgets.”

Pourahmad et al. 2020, A Simple Baseline for Low-Budget Active Learning

“One key observation is that the benefit or the drawback of using another method than random 
sampling to construct the initial set disappears rapidly within the next few AL cycles.”

Lang et al. 2021, Best Practices in Pool-based Active Learning for Image Classification
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3. Lang et al 2021. “Best Practices in Pool-based Active Learning for Image Classification.” ICLR 2022 submission.



Part II: Causes of Cold Start Problem & Our Solution
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Inter-class Factor: Enforcing Label Diversity to Reduce Biased Query

Random Consistency VAAL Margin Entropy Coreset BALD
adipose

background
debris

epithelium

lymphocytes
mucus

mucosa
muscle

stroma

HaCon (ours)

Entropy 3.154 3.116 2.800 2.858 2.852 3.0943.006 3.122

Higher Entropy = More Balanced Query



Our Benchmark: Uniform vs. Non-uniform
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Label uniformity: How uniform the sampled labels are in the query

Inter-class Factor: Enforcing Label Diversity to Reduce Biased Query
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1. Pourahmadi, Kossar et al. “A Simple Baseline for Low-Budget Active Learning.” ArXiv abs/2110.12033 (2021): n. Pag.

Label uniformity: How uniform the sampled labels are in the query

We hypothesize label uniformity is a good indicator.

“K-means strategies outperform non-uniform methods and are on par with 
uniform.”

Pourahmad et al. 2020, A Simple Baseline for Low-Budget Active Learning

Inter-class Factor: Enforcing Label Diversity to Reduce Biased Query
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1. Pourahmadi, Kossar et al. “A Simple Baseline for Low-Budget Active Learning.” ArXiv abs/2110.12033 (2021): n. Pag.

Label uniformity: How uniform the sampled labels are in the query

We hypothesize label uniformity is a good indicator.

“K-means strategies outperform non-uniform methods and are on par with 
uniform.”

Pourahmad et al. 2020, A Simple Baseline for Low-Budget Active Learning

Label uniformity is not easy to achieve because 
• Active learning tends to bias towards certain classes
• Random sampling ≠ uniform sampling in unbalanced datasets

Inter-class Factor: Enforcing Label Diversity to Reduce Biased Query
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Following Uniform Distribution, Which Data to Sample?
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A Primer on Data Maps
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Data Map for Active Learning (II)

1. Karamcheti, Siddharth et al. “Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question 
Answering.” ArXiv abs/2107.02331 (2021): n. pag.

2. Swayamdipta, Swabha et al. “Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics.” EMNLP (2020).
19

Collective outliers harm active learning performance!

- Contemporary AL methods sample outliers.
- Such outliers are usually difficult to learn. 



Contrastive Self-supervised Learning
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Self-supervised Pseudo Labels and Data Map
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Self-supervised Pseudo Labels and Data Map



Intra-class Factor: Selecting Typical Data to Avoid Outlier Query
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(a) Overall distribution
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Intra-class Factor: Selecting Typical Data to Avoid Outlier Query
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Easy-to-learn Hard-to-learn Easy-to-contrast Hard-to-contrast

(a) PathMNIST (b) OrganAMNIST (c) BloodMNIST (d) CIFAR-10-LT



Pseudo-labels Select Typical Data to Avoid Outlier Query
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(a) PathMNIST (b) OrganAMNIST (c) BloodMNIST
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Label Uniformity & Hard-to-Contrast Data

We hypothesize that the level of 
(i) Label uniformity [inter-class factor]
(ii) Hard-to-Contrast (typical) data [intra-class factor]

are the underlying indicators of the data importance.
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Label Uniformity & Hard-to-Contrast Data

We hypothesize that the level of 
(i) Label uniformity [inter-class factor]
(ii) Hard-to-Contrast (typical) data [intra-class factor]

are the underlying indicators of the data importance.

- Label uniformity: Higher category coverage is associated with higher performance
- Typical data: Typical data are useful for model training
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Part III: Towards Effective Initial Query in Active Learning
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Our Solution: HaCon

Inter-class factor: Label Uniformity

Intra-class factor: Hard-to-Contrast Data
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(a) Overall distribution

Easy-to-learn

Hard-to-learn

Easy-to-contrast

Hard-to-contrast

(b) Cartography by ground truth (c) Cartography by pseudo label

basophil
eosinophil
erythroblast

lymphocyte
monocyte
neutrophil

ig
platelet

Contrastive pre-training

Data Map by pseudo-labels

Cluster image features

Query the most typical images among each cluster



Active Learning Performance
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- HaCon > Random selection
- HaCon > Contemporary AL methods

Better initial query leads to better AL!

OrganAMNIST, CT scan, image size 28*28

HAM10000, dermatoscopy, image size 512*512



Ablation Study: HaCon Components
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• 1) Contrastive learning, 2) K-means clustering, and 3) Hard-to-contrast 
criterion all contribute to HaCon performance.

• Diversity matters: K-means clustering is the most critical component.



Ablation Study: Number of Clusters (K)
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• Overclustering: The number of clusters (K) should be larger than the 
number of classes to ensure coverage of all classes. 

• Optimal K: size of the initial query



Take-home Messages

1. Illustrate the cold start problem in vision active learning.
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Take-home Messages

1. Illustrate the cold start problem in vision active learning.

2. Discover that 
Ø biased query [inter-class factor]
Ø outlier query [intra-class factor] 
are the underlying causes of the cold start problem.
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Take-home Messages

1. Illustrate the cold start problem in vision active learning.

2. Discover that 
Ø biased query [inter-class factor]
Ø outlier query [intra-class factor] 
are the underlying causes of the cold start problem.

3. Investigate the role of hard-t0-contrast data in the cold start problem.

4. Extend data map to self-supervised learning.

This work serves as a simple yet strong baseline to sample the initial query for the 
“human-in-the-loop” active learning procedure.
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“The secret of getting ahead is getting started.”
— Mark Twain
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