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Imaging data account for about 90% of all healthcare data
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Deep Learning has ushered in a revolution in medical imaging



CT Ground Truth Deep Learning
annotated by human experts

® Liver

@ Livertumor

1. Zhou, Zongwei. "Towards annotation-efficient deep learning for computer-aided diagnosis." PhD diss., Arizona State University, 2021.



Radiologists hate annotation, but computer scientists love annotation.

CT Ground Truth Deep Learning
annotated by human experts

® Liver

@ Livertumor

Not enough annotation

1. Zhou, Zongwei. "Towards annotation-efficient deep learning for computer-aided diagnosis." PhD diss., Arizona State University, 2021.



Chapter1(2016-2022)

Methodologies: Reducing Annotation Efforts for Radiologists
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Computer-Aided Diagnosis

Assisting expert radiologists to see more patients and
to deliver more accurate diagnosis (beyond human eye)
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Model performance

s
Amount of annotated data (time & money)
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Goal: Reduce annotation efforts for radiologists.

Model performance
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Amount of annotated data (time & money)
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Goal: Reduce annotation efforts for radiologists.

1. Acquiring necessary annotation efficiently from human experts.
* Active, Continual Fine-Tuning (ACFT)
e CVPR'17, MedIA’21, MIDL'23

® Active selection

Model performance

® Random selection

e
Amount of annotated data (time & money)
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Goal: Reduce annotation efforts for radiologists.

1. Acquiring necessary annotation efficiently from human experts.

AUC
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Active, Continual Fine-Tuning (ACFT)
CVPR’17, MedIA’21, MIDL' 23
Integrating uncertainty and diversity criteria

Reducing over 80% annotation cost

® Active selection

Model performance

® Random selection

e
Amount of annotated data (time & money)
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Goal: Reduce annotation efforts for radiologists.

1. Acquiring necessary annotation efficiently from human experts. §
2. Utilizing existing annotation effectively from advanced models. S
e UNet++ «%
« MICCAIW’18, IEEE TMI'19 (Most Popular Articles) % ® UNet++
O
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= ® U-Net

e
Amount of annotated data (time & money)
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Goal: Reduce annotation efforts for radiologists.
1. Acquiring necessary annotation efficiently from human experts.
2. Utilizing existing annotation effectively from advanced models.
* UNet++
 MICCAIW’18, IEEE TMI'19 (Most Popular Articles)

e Aggregating multi-scale, multi-resolution features

® UNet++
® U-Net

e Detecting very small tumors without too many FPs >
Amount of annotated data (time & money)

Model performance

CT Ground Truth UNet++ Prediction
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Goal: Reduce annotation efforts for radiologists.
1. Acquiring necessary annotation efficiently from human experts.

2. Utilizing existing annotation effectively from advanced models.

* UNet++

« MICCAIW’18, IEEE TMI'19 (Most Popular Articles)
e Aggregating multi-scale, multi-resolution features

e Detecting very small tumors without too many FPs

L IRVINISIe=S (cited by 5,644)
® U-Net (cited by 65,539)

e
Amount of annotated data (time & money)

Model performance

43.9% — 58.1% (U-Net — UNet++) 78.6% — 82.9% (U-Net — UNet++) 86.5% — 89.5% (U-Net — UNet++)
Covid-19 segmentation (CT) Fiber tracing (corneal confocal microscopy) Spleen segmentation (MRI)
[Fan et al., IEEE TMI] [Mou et al., MICCAI] [Li et al., Computers & Graphics]
86.6% — 87.2% (U-Net — UNet++) 90.2% — 92.0% (U-Net — UNet++) 60.3% — 71.6% (U-Net — UNet++)
SegTHOR 2019 Challenge (CT) Optic Disc & Cup Segmentation (fundus image) Ground-glass opacity segmentation (CT)
[Zhang et al., IEEE TMI] [Meng et al., MICCAI] [Zheng et al., IEEE Access]
51.2% — 58.6% (U-Net — UNet++) 63.7% — 66.3% (U-Net — UNet++) 90.7% — 91.6% (U-Net — UNet++)
Esophagus segmentation (CT) Liver tumor segmentation (CT) Heart segmentation (MRI)
[Huang et al., IEEE Access] [Bajpai et al., Master Thesis] [Ji et al., MICCAI]




Goal: Reduce annotation efforts for radiologists.
1. Acquiring necessary annotation efficiently from human experts.
2. Utilizing existing annotation effectively from advanced models.

3. Extracting generic knowledge directly from unannotated images.

* Models Genesis

 MICCAI'19 (Young Scientist Award), MIA (Best Paper Award)

® Models Genesis

Model performance

® Learning from scratch

e
Amount of annotated data (time & money)

Feature Learning

! Transfer Learning
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Goal: Reduce annotation efforts for radiologists.
1. Acquiring necessary annotation efficiently from human experts.
2. Utilizing existing annotation effectively from advanced models.

3. Extracting generic knowledge directly from unannotated images.

* Models Genesis ® Models Genesis

 MICCAI'19 (Young Scientist Award), MIA (Best Paper Award)
* The First publicly available 3D pre-trained model

Model performance

® Learning from scratch

o

A demonstration of masked image modeling in medicine Amount of annotated data (time & money)

————————————————————

Decoder

v

Deformation

N —————————————— - -



Goal: Reduce annotation efforts for radiologists.
1. Acquiring necessary annotation efficiently from human experts.

2. Utilizing existing annotation effectively from advanced models.

3. Extracting generic knowledge directly from unannotated images.

— —PhD dissertation——

Doctoral Dissertation Award Winner

® Annotation-efficient Al

® Annotation-intensive Al

Model performance
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Goal: Reduce annotation efforts for radiologists.
1. Acquiring necessary annotation efficiently from human experts.

2. Utilizing existing annotation effectively from advanced models.

3. Extracting generic knowledge directly from unannotated images.

— —PhD dissertation——

4. Generating annotation automatically from tumor synthesis.

mma Py

4 / .
LB TR DG Synthesis

Healthy Data Diseased Data &

|| Annotation-free Al

® Annotation-efficient Al

(oS

® Annotation-intensive Al

Model performan

s
Amount of annotated data (time & money)

Annotation Applications



Medical professionals cannot tell which are real and which are synthetic tumors

1. Hu, Qixin, Yixiong Chen, Junfei Xiao, Shuwen Sun, Jieneng Chen, Alan Yuille, and Zongwei Zhou*. "Label-Free Liver Tumor
Segmentation." CVPR-2023.



Training Al on synthetic tumors performs almost as well as training it on real tumors

Al prediction
trained on synthetic tumors
with no annotation
DSC = 60% [55% - 65%]

Al prediction
trained on real tumors
with per-voxel annotation
DSC =58% [52% - 63%]

T
i S
=S
LAt

1

o
C‘ :
5
8
4
.

‘ Liver

‘ Liver tumor

1. Hu, Qixin, Yixiong Chen, Junfei Xiao, Shuwen Sun, Jieneng Chen, Alan Yuille, and Zongwei Zhou*. "Label-Free Liver Tumor

Segmentation." CVPR-2023.



[Qualitative] Generating enormous small tumors for training Al models

liver 19 N T O liver 19

CT scan zoom-in ground truth Al trained on Al trained on
real tumors synthetic tumors

1. Hu, Qixin, Yixiong Chen, Junfei Xiao, Shuwen Sun, Jieneng Chen, Alan Yuille, and Zongwei Zhou*. "Label-Free Liver Tumor
Segmentation." CVPR-2023.



[Quantitative] Generating enormous small tumors for training Al models

Al trained on synthetic tumors
B Altrained on real tumors
B ground truth
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1.

Hu, Qixin, Yixiong Chen, Junfei Xiao, Shuwen Sun,
Segmentation." CVPR-2023.

Observation: Compared with real tumors,
Al trained on synthetic tumors improves Sensitivity
from 52% to 62% for detecting small tumors (0-5mm).

Needed for early detection
o Early signs of cancer can be subtle

o 1/2 of liver cancer are missed by radiologists

Needed for Al development
o CT scans with early cancer are limited

o Annotations for early cancer are hard

Needed for medical education
o Junior radiologists have an Accuracy of 20%
o Senior radiologists have an Accuracy of 78%

Jieneng Chen, Alan Yuille, and Zongwei Zhou*. "Label-Free Liver Tumor



Significant

Annotation-intensive
deep learning

Applications
Methodologies

Annotation-efficient
deep learning

Impactful

Annotation-free
deep learning




Chapter 1l (2020-present)

Applications: Developing 3D Maps of Whole Body

Applications
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Image-guided | Quantitative analysis of Earlier detection Radiomics and

. i . . Neuroimaging
surgery disease progression of cancer predictive analytics

Edward H. Shortliffe, MD, PhD
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Cognitive Informatics in Biomedicine and Healthcare

Trevor.Cohen
Vimla L Patel
Edward Shortliffe Editors

' Intelligent
| Systems in Interpreting Medical Images

Shortliffe Home
Professional Interests
Personal Statement
Personal Interests
C.V. & Biosketch

Textbook: Intelligent
Systems in Medicine
and Health (2022)

Textbook: Biomedical
Informatics (5th edition,
2021)

Rule-Based Expert
Systems: MYCIN (1984)

Readings in Medical
Artificial Intelligence
?1984)

Home > Intelligent Systems in Medicine and Health > Chapter

MEd iCin e a n d Zongwei Zhou, Michael B. Gotway & Jianming Liang

Hea |th Chapter \ First Online: 10 November 2022

The Role of Al 663 Accesses | 1 Citations
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Earlier detection

of cancer

The FELIX Project
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Earlier detection

of cancer

The FELIX Project

Goal: Earlier detection of pancreatic cancer
e 40,000,000 abdominal CT scans are performed each year in U.S.
* 1/3 of pancreatic cancer in these scans are missed by Radiologists.
e Pancreatic cancer is treatable if detected early.
* Deep Learning can see things in images that most humans miss.
e 5,038 annotated CT scans at Johns Hopkins w Sensitivity=97%, Specificity=99%

* This dataset took 15 years to annotate for a human.

1. Xia, Yingda, Qihang Yu, Linda Chu, Satomi Kawamoto, Seyoun Park, Fengze Liu, Jieneng Chen et al. "The felix project:
Deep networks to detect pancreatic neoplasms." medRxiv (2022): 2022-09.



Earlier detection

of cancer

The FELIX-Civitas Project

Goal: Earlier detection of pancreatic cancer
New Goal: Earlier detection of a variety of cancers
* Body Maps: 3D Maps of Whole Body
* Conceptually similar to Google Maps, but it focuses on human anatomy rather than the Earth's geography.
* (1) Accurate segmentation of 104 anatomical structures.
e (2) Cancer screening and localization across various structures.

* (3) Language interaction between users and systems.



Earlier detection

of cancer

The FELIX-Civitas Project

Goal: Earlier detection of pancreatic cancer
New Goal: Earlier detection of a variety of cancers
* Body Maps: 3D Maps of Whole Body
* Conceptually similar to Google Maps, but it focuses on human anatomy rather than the Earth's geography.
* (1) Accurate segmentation of 104 anatomical structures.
e (2) Cancer screening and localization across various structures.
* (3) Language interaction between users and systems.
 McGovern and Lustgarten (role: Team Investigator; status: awarded)
* NIH K99/R00 (role: PI; status: under review)

 NIH RO1 and ACS Grant (role: Team Investigator; status: under review)



Body Maps: 3D Maps of Whole Body
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Fine-tune
models

L_abeled <j Unlabeled
images

images

Select
important
images

Interactive
segmentation
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featured in

featured in
Chlmerax Vision Encoder MONAI
at UCSF & Decoder

This tumor is likely
to be PDAC with a
diameter of 25mm.

Please segment the tumor in the ve rsal
tail of the pancreas and then
measure its size. g MOdEI

Take a look at these CT scans and
mark the suspected tumor region.

Text Encoder

Two potential tumors are
------ framed in bounding boxes.



AbdomenAtlas-8K

8,848 annotated CT volumes
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Universal Model

25 organs and 7 cancers
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Significant

Scaling datasets

Multiple modalities
Diverse institutes
IRB approval

Tumor Synthesis

Annotation-free deep learning

New Chapter (2020s)

Challenges and Questions

Applications
Methodologies

Scaling annotations

Efficient annotation
Human in the loop
Novel disease

AbdomenAtlas-8K

8,848 annotated CT volumes

Impactful

Scaling algorithms

Vision-language
Lifelong learning
Reader study

Universal Model

25 organs and 7 cancers



Thank You!

Zongwei Zhou, PhD
Postdoc, Department of Computer Science
Johns Hopkins University, Baltimore, MD
P: 1-(480)738-2575 | E: zzhou82@jh.edu
WWW.zongweiz.com



