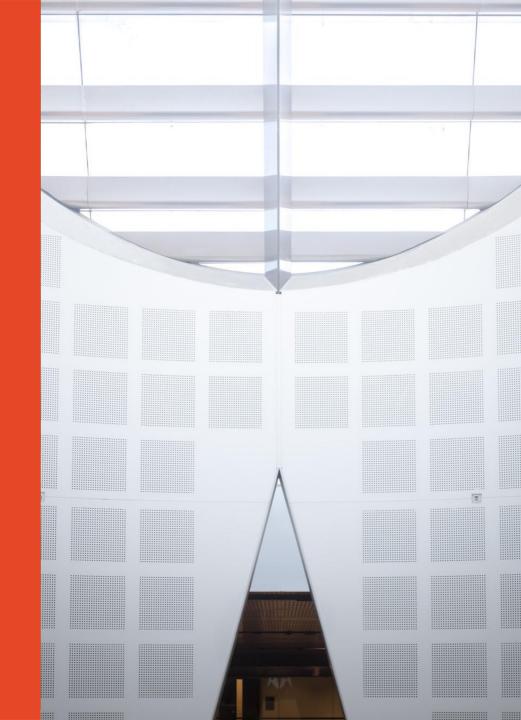
Deep Feature In-painting for Unsupervised Anomaly Detection in Radiography Images

Tiange Xiang, Yixiao Zhang, Yongyi Lu, Alan L. Yuille, Chaoyi Zhang, Weidong Cai, Zongwei Zhou

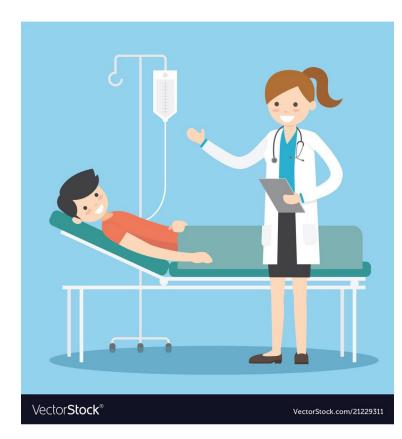


Outline

1. Motivation

- 2. Background & Literature
- 3. Problem Definition
- 4. Methodology
- 5. Results
- 6. Discussion
- 7. Conclusion

Motivation: Why ML for Medical Imaging?

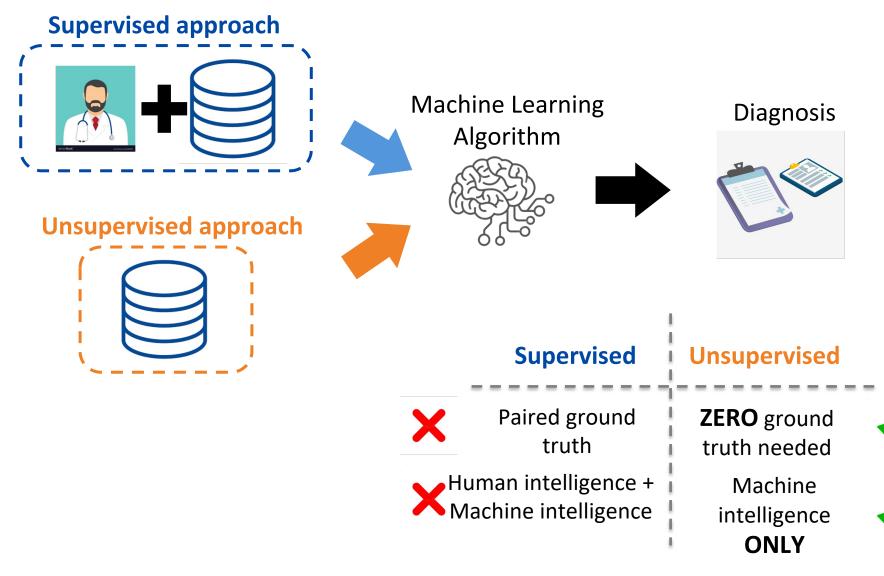


- Faster diagnosis/treatment.
- \checkmark

• Less human intervention.

• Saves more lives.

Motivation: Why Unsupervised Learning?



Motivation: Anomaly in Chest X-rays

Normal

Abnormal

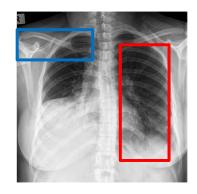
Anomaly Detection in Crowded Scenes (photography images)

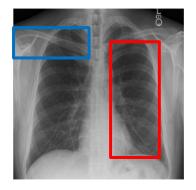
Anomaly Detection in Textures and Objects (photography images)

Anomaly Detection in Chest Anatomy (radiography images)

Motivation: Unique Characteristics for Chest X-rays

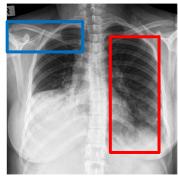
Radiography images

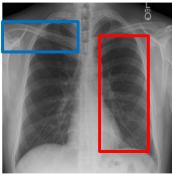




Motivation: Unique Characteristics for Chest X-rays

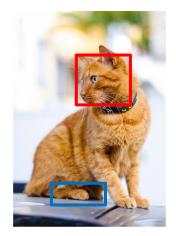
Radiography images

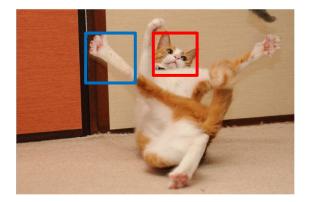




Consistent shapes/appearances and fixed poses.

Photography images





Outline

1. Motivation

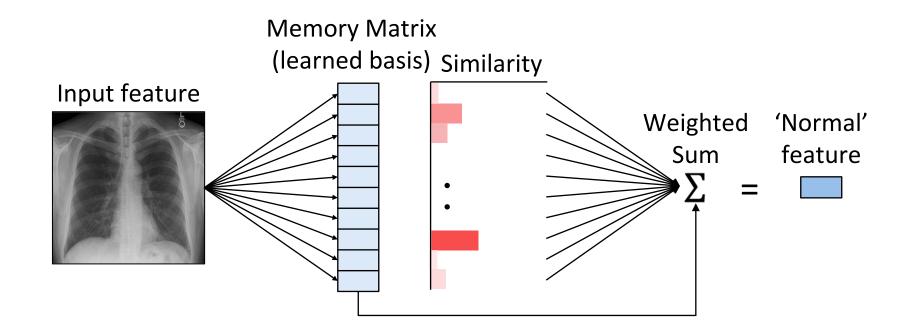
2. Background & Literature

- 3. Problem Definition
- 4. Methodology
- 5. Results
- 6. Discussion
- 7. Conclusion

Literature: Baseline – MemAE (Gong etal., ICCV 2019)

Literature: Baseline – MemAE (Gong etal., ICCV 2019)

Feature Augmentation



Outline

- 1. Motivation
- 2. Background & Literature

3. Problem Definition

- 4. Methodology
- 5. Results
- 6. Discussion
- 7. Conclusion

Problem Definition & Objectives

Algorithm Robustness

Robust to pixel distortions, mixed training dataset.

Proposal of multiple new

techniques and strategies

Methodology novelty

Methodology Interpretability

 \Rightarrow

Creation of an intuitive dataset to better interpretate ideas

Performance superiority

SOTA performances on public and challenging benchmarks

Evaluation correctness

Evaluation under the TRUE UAD protocol with the best results.

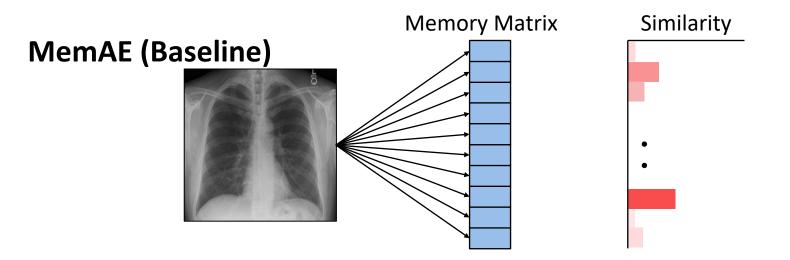
Outline

- 1. Motivation
- 2. Background & Literature
- 3. Problem Definition

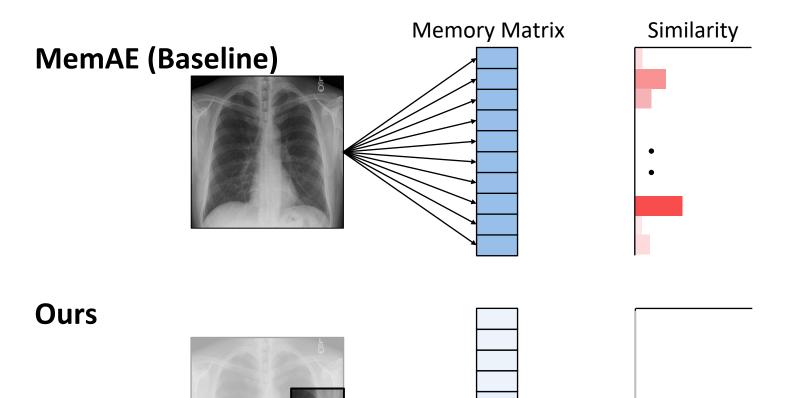
4. Methodology

- 5. Results
- 6. Discussion
- 7. Conclusion

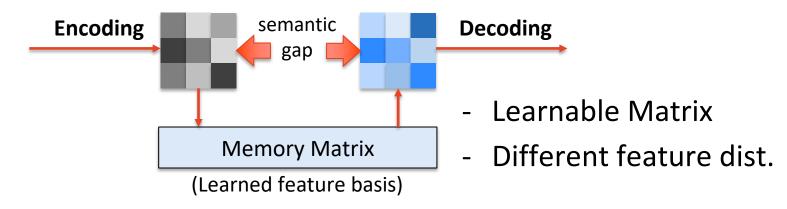
Methodology: Space-aware Memory



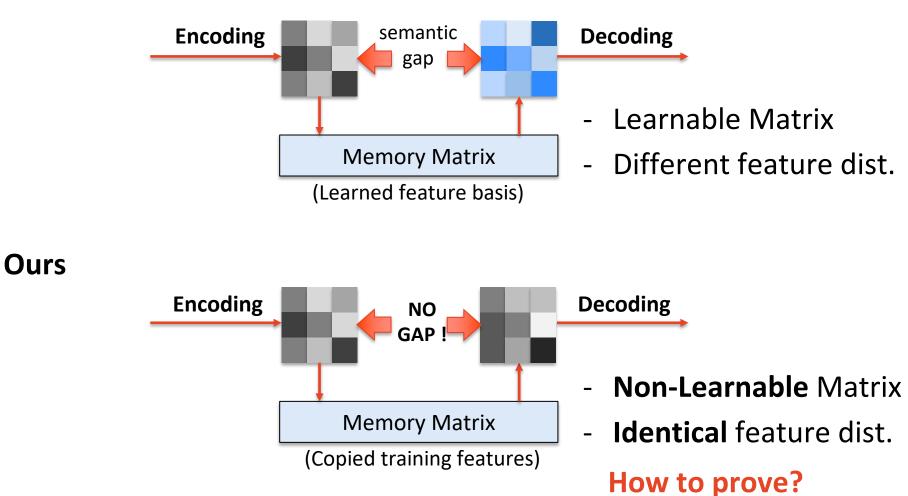
Methodology: Space-aware Memory



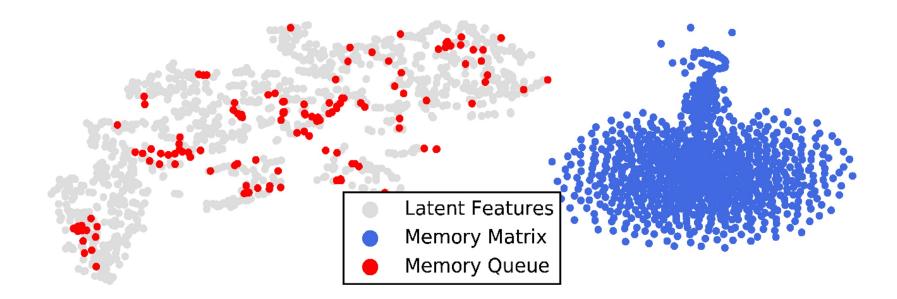
MemAE (Baseline)



MemAE (Baseline)



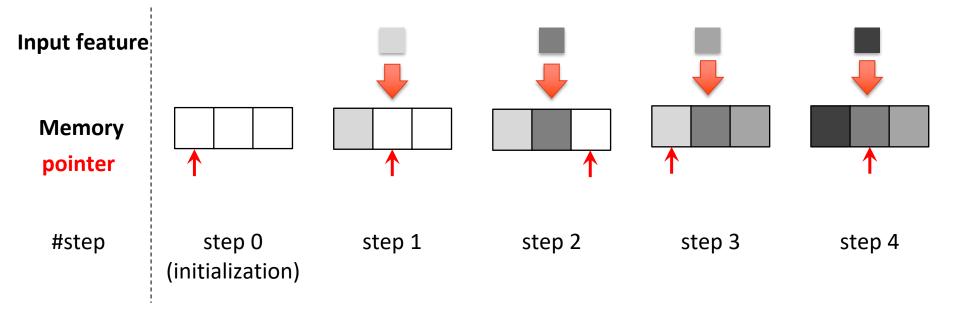
t-SNE feature visualizations



How to copy and paste?

- Memory matrix needs to be updated with most recent features.
- Refresh the entire matrix at every training step is inefficient.

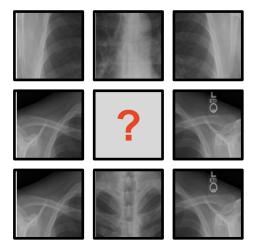
Memory Queue Processing



- First-in-first-out updating rule.
- Small learning rate helps.

Methodology: UAD as Feature-Space In-painting

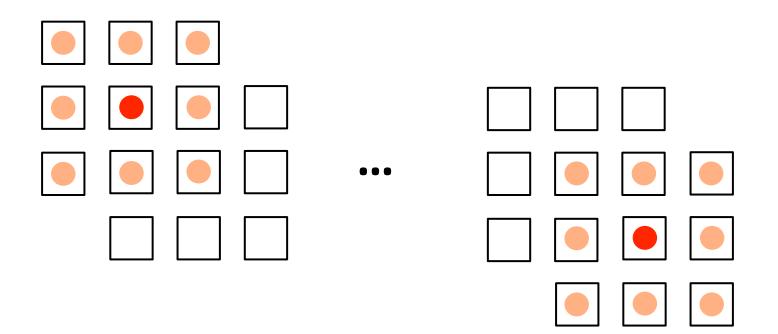
Pixel-Space In-painting



Feature-Space In-painting

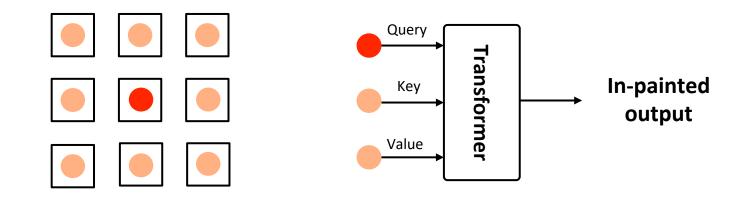
Given the contextual information What does a normal patch look like?

Methodology: UAD as Feature-Space In-painting

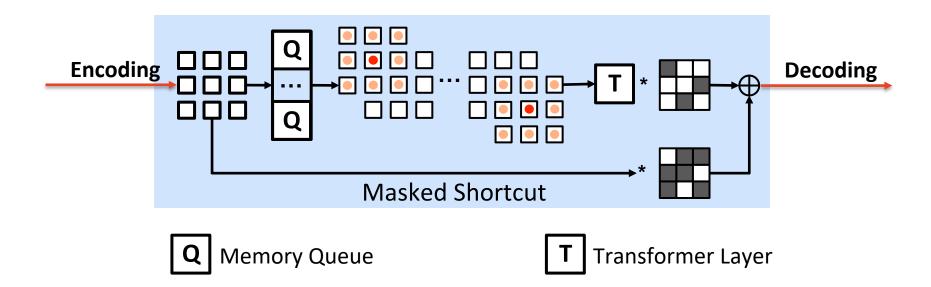


- Sliding window to traverse all patches
- Zero padding for out-of-range patches

Methodology: UAD as Feature-Space In-painting



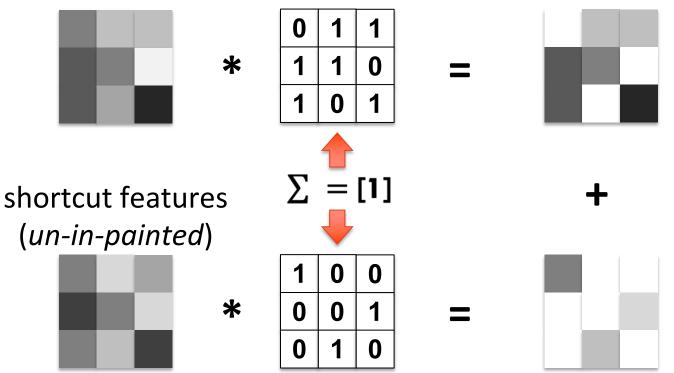
Methodology: In-painting Block



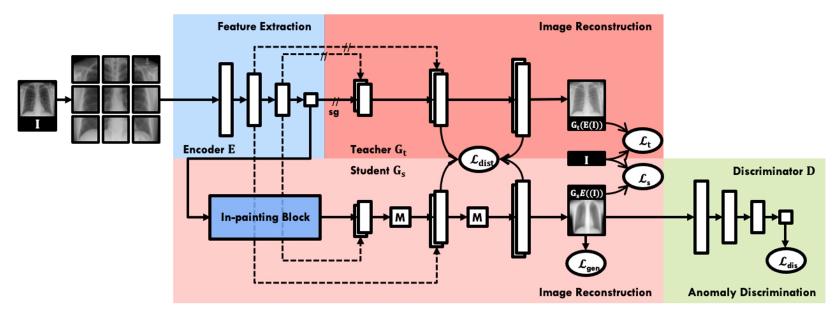
- Use shortcut for gradient preservation and better feature aggregation.
- Naive identity shortcut leads to degenerations.

Methodology: Masked Shortcut

in-painted features



Space-aware memory QUeue for In-painting and Detecting

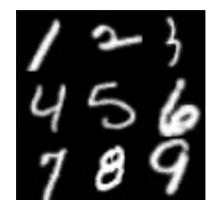


- GAN for adversarial learning
- Knowledge Distillation for regularization
- Generation quality as anomaly score
- Supervised by self-reconstruction losses.

Methodology: Creation of DigitAnatomy

Chest Anatomy

Digit Anatomy



Characteristics

- Consistent shape
- Fixed pose

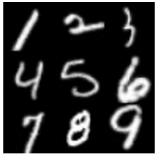
Benefits

- Intuitive demos 🗸
- Easy development/debug

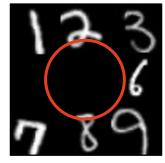
Methodology: Creation of DigitAnatomy

Normal

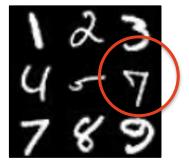
(1-9 in order)



Abnormal (missing digits)



Abnormal (disorder digits)

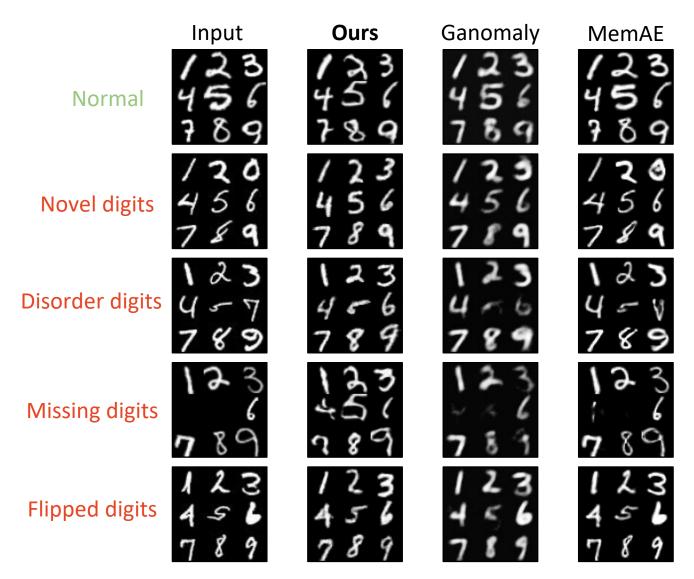


Abnormal (flipped digits)

Outline

- 1. Motivation
- 2. Background & Literature
- 3. Problem Definition
- 4. Methodology
- 5. Results
- 6. Discussion
- 7. Conclusion

Results: Interpretations on DigitAnatomy



Results: Public Benchmarks

Zhang Lab Chest X-ray Dataset:

Disease include: Pneumonia.

Stanford CheXpert:

Disease include: Cardiomegaly, Enlarged Cardiomegaly, Lung Lesion, Lung Opacity, Edema, Consolidation, Pneumonia, Atelectasis, Pneumothorax, Pleural Effusion, Pleural Other, Fracture.

	ZhangLab	CheXpert	
Train set (pos./neg.)	3783 / 1249	21171 / 4999	
Val. set (pos./neg.)	100 / 100	19 / 14	
Test set (pos./neg.)	390 / 234	250 / 250	
#Anomalies	1	12	
Difficulty level	$\mathbf{\hat{\mathbf{x}}}\mathbf{\hat{\mathbf{x}}}$		

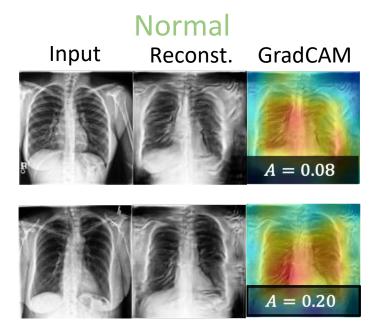
Results: Public Benchmarks

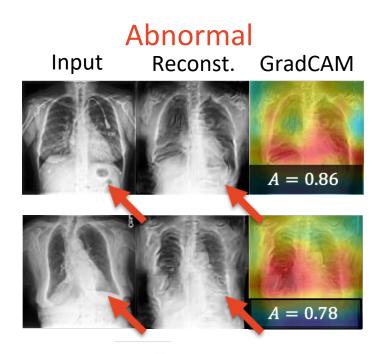
Quantitative Eval.

	ZhangLab	Ref & Year	AUC (%)	Acc (%)	F1 (%)
- AUC, Acc, F1 as	Auto-Encoder	-	59.9	63.4	77.2
	VAE [35]	Arxiv'13	61.8	64.0	77.4
	Ganomaly [1]	ACCV'18	78.0	70.0	79.0
	f-AnoGAN [61]	MIA'19	75.5	74.0	81.0
metrics.	MemAE [17]	ICCV'19	77.8 ± 1.4	56.5 ± 1.1	$82.6 {\pm} 0.9$
	MNAD [53]	CVPR'20	77.3 ± 0.9	$73.6 {\pm} 0.7$	79.3 ± 1.1
	SALAD [82]	TMI'21	82.7 ± 0.8	$75.9 {\pm} 0.9$	82.1 ± 0.3
- Results of 3+	CutPaste [40]	CVPR'21	73.6 ± 3.9	64.0 ± 6.5	72.3 ± 8.9
	PANDA [56]	CVPR'21	65.7 ± 1.3	65.4 ± 1.9	66.3 ± 1.2
independent runs.	M-KD [59]	CVPR'21	74.1 ± 2.6	69.1 ± 0.2	62.3 ± 8.4
	IF 2D [50]	MICCAI'21	81.0 ± 2.8	76.4 ± 0.2	82.2 ± 2.7
	PaDiM [12]	ICPR'21	71.4 ± 3.4	72.9 ± 2.4	80.7 ± 1.2
	IGD [10]	AAAI'22	73.4 ± 1.9	74.0 ± 2.2	80.9 ± 1.3
- > <mark>5%</mark> AUC imp. on	SQUID	-	87.6±1.5	80.3±1.3	84.7±0.8
ZhangLab.					
	CheXpert	Ref & Year	AUC (%)	Acc (%)	F1 (%)
 ><u>9%</u>AUC imp. on 	Ganomaly [1]	ACCV'18	68.9 ± 1.4	$65.7 {\pm} 0.2$	65.1 ± 1.9
•	f-AnoGAN [61]	MIA'19	65.8 ± 3.3	63.7 ± 1.8	59.4 ± 3.8
CheXpert.	MemAE [17]	ICCV'19	54.3 ± 4.0	55.6 ± 1.4	53.3 ± 7.0
	CutPaste [40]	CVPR'21	65.5 ± 2.2	62.7 ± 2.0	60.3 ± 4.6
	PANDA [56]	CVPR'21	$68.6 {\pm} 0.9$	66.4 ± 2.8	65.3 ± 1.5
	M-KD [59]	CVPR'21	69.8 ± 1.6	66.0 ± 2.5	63.6 ± 5.7
	SQUID	-	78.1±5.1	71.9±3.8	75.9±5.7

Results: Public Benchmarks

Qualitative Eval.





- Reconstructed normal images seem normal.
- Reconstructed abnormal images seem normal.
- Reconstructed normal/abnormal images have clear quality diff.
- High anomaly score (A) for abnormal images, low for normal images.

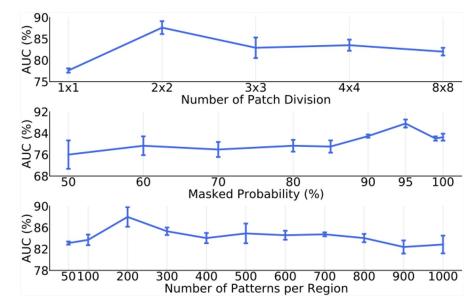
Results: Ablation Studies

Component Studies

TABLE 4.4. Component studies indicate that the overall performance benefits from all of the components in SQUID. The ablation study is conducted on the ZhangLab dataset.

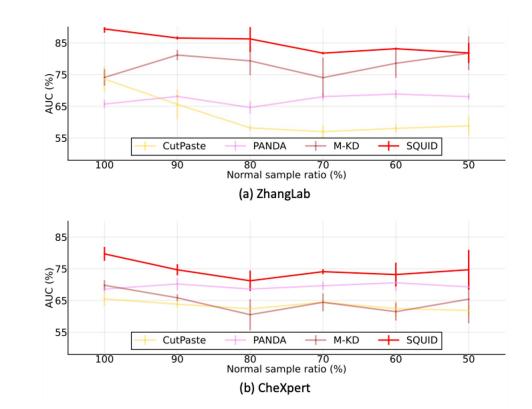
Method	AUC(%)	Acc(%)	F1(%)
w/o Space-aware Memory	77.6 ± 0.5	$75.5 {\pm} 0.5$	82.5±0.6
w/o In-painting Block	$80.9 {\pm} 2.1$	$75.8 {\pm} 1.5$	81.6 ± 1.3
w/o Skip Connection	79.5±1.6	$73.0{\pm}1.4$	$78.8{\pm}0.5$
w/o Hierarchical Memory	82.9 ± 1.2	77.4 ± 1.1	81.2 ± 0.5
w/o Knowledge Distillation	$85.4{\pm}0.8$	$79.5 {\pm} 0.7$	$83.5 {\pm} 0.8$
w/o Stop Gradient	85.0±4.3	$77.6 {\pm} 2.8$	79.8±1.6
w/o Gumbel Shrinkage	86.2 ± 3.3	80.5 ± 3.2	$85.4{\pm}2.1$
Full SQUID	87.6±1.5	80.3±1.3	84.7±0.8

Hyper-param. Studies



Results: True UAD Training

- Training dataset contains unknown data (normal/abnormal mixture).
- UAD algorithms should be robust to the mixed training.
- SQUID (red plots) yields the best robustness when the normal sample ratio >=60%.



Outline

- 1. Motivation
- 2. Background & Literature
- 3. Problem Definition
- 4. Methodology
- 5. Results

6. Discussion

7. Conclusion

Discussion

Limitations & Future Work

- Complex framework.
 - Reuse networks/layers.
 - Better skip connections.
- Inefficient inference.
 - Lighter-weight backbone/operators.
 - Network pruning/quantization/compression.
- Inaccurate pixel-wise anomaly detection.
 - Feature-space residual.
 - In-painting + data augmentation.

Outline

- 1. Motivation
- 2. Background & Literature
- 3. Problem Definition
- 4. Methodology
- 5. Results
- 6. Discussion

7. Conclusion

Conclusion

- Reformulated UAD as feature-space in-painting.
- Proposed Space-aware Memory Queue that caters to the unique characteristics of chest radiography.
- Designed multiple functional modules: Gumbel Shrinkage, Masked Shortcut,
 Anomaly discrimination that have never been explored in the UAD domain.
- Created the **DigitAnatomy** dataset to assist algorithm design in this domain.
- Achieved **SOTA performances** on three public benchmarks.
- Evaluated methods under the **real UAD training** settings for the first time.

References

- Dong Gong, Lingqiao Liu, Vuong Le, Budhaditya Saha, Moussa Reda Mansour, Svetha Venkatesh, and Anton van den Hengel. 2019. Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 1705–1714.
- Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pages 234–241. Springer.
- Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. *Advances in neural information processing systems*, 27.
- Mohammadreza Salehi, Niousha Sadjadi, Soroosh Baselizadeh, Mohammad Hossein Rohban, and Hamid R Rabiee. 2020. Multiresolution knowledge distillation for anomaly detection.
- Tiange Xiang, Chaoyi Zhang, Yang Song, Siqi Liu, Hongliang Yuan, and Weidong Cai. 2021. Partial graph reasoning for neural network regularization. *arXiv preprint arXiv:2106.01805*.
- Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas Pfister. 2021. Cutpaste: Self-supervised learning for anomaly detection and localization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9664–9674.
- He Zhao, Yuexiang Li, Nanjun He, Kai Ma, Leyuan Fang, Huiqi Li, and Yefeng Zheng. 2021. Anomaly detection for medical images using self-supervised and translation-consistent features. *IEEE Transactions on Medical Imaging*.
- Samet Akcay, Amir Atapour-Abarghouei, and Toby P Breckon. 2018. Ganomaly: Semi-supervised anomaly detection via adversarial training. In *Asian conference on computer vision*, pages 622–637. Springer.
- Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Georg Langs, and Ursula Schmidt- Erfurth. 2019. fanogan: Fast unsupervised anomaly detection with generative adversarial net- works. *Medical Image Analysis*.
- Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula Schmidt-Erfurth, and Georg Langs. 2017. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In *International* conference on information processing in medical imaging, pages 146–157. Springer.
- Tiange Xiang, Yixiao Zhang, Yongyi Lu, Alan Yuille, Chaoyi Zhang, Weidong Cai, Zongwei Zhou, "In-painting Radiography Images for Unsupervised Anomaly Detection", Submitted to *The 17th European Conference on Computer Vision (ECCV 2022)*, 2022. (Under Review)
- Tiange Xiang, Yixiao Zhang, Yongyi Lu, Alan Yuille, Chaoyi Zhang, Weidong Cai, Zongwei Zhou, "Feature-level In-painting for Unsupervised Anomaly Detection in Radiography Images", Sub- mitted to *Medical Image Analysis*, 2022. (Under Review)

Thank you!

Any questions ?

