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Motivation: Why ML for Medical Imaging?

● Faster diagnosis/treatment.

● Less human intervention.

● Saves more lives. 
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Motivation: Why Unsupervised Learning?

Machine Learning
Algorithm

Diagnosis

Supervised approach

Unsupervised approach

Supervised Unsupervised

Paired ground 
truth

Human intelligence +
Machine intelligence

ZERO ground 
truth needed

Machine 
intelligence

ONLY
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Motivation: Anomaly in Chest X-rays

Anomaly Detection in Chest Anatomy
(radiography images)

Anomaly Detection in Textures and Objects
(photography images)

Anomaly Detection in Crowded Scenes 
(photography images)

Normal Abnormal
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Motivation: Unique Characteristics for Chest X-rays

Radiography images
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Motivation: Unique Characteristics for Chest X-rays

Radiography images

Photography images

Consistent shapes/appearances and fixed poses.
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Literature: Baseline – MemAE (Gong etal., ICCV 2019)

Memory Matrix

Reconstruction
Training Data

（normal only）

Encoding Decoding
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Literature: Baseline – MemAE (Gong etal., ICCV 2019)

Input feature
Similarity

Weighted
Sum

Feature Augmentation

‘Normal’
feature

=

Memory Matrix
(learned basis)
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Problem Definition & Objectives

Algorithm Robustness

Methodology novelty

Methodology Interpretability

Performance superiority

Evaluation correctness

Robust to pixel distortions, 
mixed training dataset.

Creation of an intuitive dataset 
to better interpretate ideas

Proposal of multiple new 
techniques and strategies

SOTA performances on public 
and challenging benchmarks

Evaluation under the TRUE UAD 
protocol with the best results.
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Methodology: Space-aware Memory
Memory Matrix Similarity

MemAE (Baseline)
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Methodology: Space-aware Memory
Memory Matrix Similarity

MemAE (Baseline)

Ours
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Methodology: Memory Queue

Memory Matrix

MemAE (Baseline)

Encoding Decoding

- Learnable Matrix
- Different feature dist.

semantic
gap

(Learned feature basis)
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Methodology: Memory Queue

Memory Matrix

Memory Matrix

MemAE (Baseline)

Ours

Encoding Decoding

Encoding Decoding

- Learnable Matrix
- Different feature dist.

- Non-Learnable Matrix
- Identical feature dist.

How to prove?

semantic
gap

NO
GAP !

(Learned feature basis)

(Copied training features)
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Methodology: Memory Queue

t-SNE feature visualizations
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Methodology: Memory Queue

How to copy and paste? 

- Memory matrix needs to be 
updated with most recent features.

- Refresh the entire matrix at every 
training step is inefficient.
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Methodology: Memory Queue

Memory Queue Processing

#step

Memory
pointer

step 0
(initialization)

Input feature

step 1 step 2 step 3 step 4

- First-in-first-out updating rule.
- Small learning rate helps.
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Methodology: UAD as Feature-Space In-painting

?

Given the contextual 
information

What does a normal 
patch look like?

Pixel-Space In-painting

?

Feature-Space In-painting

Encoding
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Methodology: UAD as Feature-Space In-painting

…

- Sliding window to traverse all patches
- Zero padding for out-of-range patches
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Transform
er

Query

Key

Value

In-painted
output

Methodology: UAD as Feature-Space In-painting
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Methodology: In-painting Block

Q

Q
… T *

*

…

Masked Shortcut

Memory Queue Transformer LayerQ T

Encoding Decoding

- Use shortcut for gradient preservation and 
better feature aggregation.

- Naive identity shortcut leads to degenerations.
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Methodology: Masked Shortcut

1 0 0
0 0 1
0 1 0

* =

shortcut features
(un-in-painted)

0 1 1
1 1 0
1 0 1

* =

+

in-painted features
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Methodology: 🦑 SQUID 🦑
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Methodology: Creation of DigitAnatomy

Chest Anatomy Digit Anatomy

Characteristics
- Consistent shape
- Fixed pose

Benefits
- Intuitive demos
- Easy development/debug
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Methodology: Creation of DigitAnatomy
Normal

(1-9 in order)

Abnormal
(novel digits)

Abnormal
(missing digits)

Abnormal
(disorder digits)

Abnormal
(flipped digits)
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Results: Interpretations on DigitAnatomy

Normal

Novel digits

Missing digits

Disorder digits

Flipped digits

Input Ours Ganomaly MemAE
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Results: Public Benchmarks

Zhang Lab Chest X-ray Dataset:
Disease include: Pneumonia.

Stanford CheXpert:
Disease include: Cardiomegaly, Enlarged Cardiomegaly, Lung Lesion, Lung Opacity, Edema, 
Consolidation, Pneumonia, Atelectasis, Pneumothorax, Pleural Effusion, Pleural Other, Fracture.

ZhangLab CheXpert

Train set (pos./neg.) 3783 / 1249 21171 / 4999

Val. set (pos./neg.) 100 / 100 19 / 14

Test set (pos./neg.) 390 / 234 250 / 250

#Anomalies 1 12

Difficulty level ⭐⭐ ⭐⭐⭐
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Results: Public Benchmarks

Quantitative Eval.

- AUC, Acc, F1 as 
metrics.

- Results of 3+ 
independent runs.

- >5%AUC imp. on 
ZhangLab.

- >9%AUC imp. on 
CheXpert.
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Results: Public Benchmarks

Qualitative Eval.

- Reconstructed normal images seem normal.
- Reconstructed abnormal images seem normal.
- Reconstructed normal/abnormal images have clear quality diff.
- High anomaly score (A) for abnormal images, low for normal images. 

AbnormalNormal
Input Reconst. GradCAM Input Reconst. GradCAM
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Results: Ablation Studies

Component Studies

Hyper-param. Studies
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Results: True UAD Training

- Training dataset contains 
unknown data 
(normal/abnormal mixture).

- UAD algorithms should be 
robust to the mixed training.

- SQUID (red plots) yields the 
best robustness when the 
normal sample ratio >=60%.
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Discussion

- Complex framework.
● Reuse networks/layers.
● BeTer skip connecUons.

- Inefficient inference.
● Lighter-weight backbone/operators.
● Network pruning/quanUzaUon/compression.

- Inaccurate pixel-wise anomaly detecGon.
● Feature-space residual.
● In-painUng + data augmentaUon.

Limitations & Future Work
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Conclusion

– Reformulated UAD as feature-space in-painting.

– Proposed Space-aware Memory Queue that caters to the unique characteristics of 
chest radiography.

– Designed multiple functional modules: Gumbel Shrinkage, Masked Shortcut, 
Anomaly discrimination that have never been explored in the UAD domain.

– Created the DigitAnatomy dataset to assist algorithm design in this domain.

– Achieved SOTA performances on three public benchmarks.

– Evaluated methods under the real UAD training settings for the first time.
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Thank you!

Any questions ?


